Two-pore-domain K(+) channels provide neuronal background currents that establish resting membrane potential and input resistance; their modulation provides a prevalent mechanism for regulating cellular excitability. The so-called TASK channel subunits (TASK-1 and TASK-3) are widely expressed, and they are robustly inhibited by receptors that signal through Galphaq family proteins. Here, we manipulated G protein expression and membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels in intact and cell-free systems to provide electrophysiological and biochemical evidence that inhibition of TASK channels by Galphaq-linked receptors proceeds unabated in the absence of phospholipase C (PLC) activity, and instead involves association of activated Galphaq subunits with the channels. Receptor-mediated inhibition of TASK channels was faster and less sensitive to a PLCbeta1-ct minigene construct than inhibition of PIP(2)-sensitive Kir3.4(S143T) homomeric channels that is known to be dependent on PLC. TASK channels were strongly inhibited by constitutively active Galphaq, even by a mutated version that is deficient in PLC activation. Receptor-mediated TASK channel inhibition required exogenous Galphaq expression in fibroblasts derived from Galphaq/11 knockout mice, but proceeded unabated in a cell line in which PIP(2) levels were reduced by regulated overexpression of a lipid phosphatase. Direct application of activated Galphaq, but not other G protein subunits, inhibited TASK channels in excised patches, and constitutively active Galphaq subunits were selectively coimmunoprecipitated with TASK channels. These data indicate that receptor-mediated TASK channel inhibition is independent of PIP(2) depletion, and they suggest a mechanism whereby channel modulation by Galphaq occurs through direct interaction with the ion channel or a closely associated intermediary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413874PMC
http://dx.doi.org/10.1073/pnas.0507710103DOI Listing

Publication Analysis

Top Keywords

task channels
20
task channel
12
channels
8
task
8
pip2 levels
8
inhibition task
8
activated galphaq
8
galphaq subunits
8
constitutively active
8
active galphaq
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!