Using the laser-heated diamond anvil cell, we investigate the stability and equation of state of the postperovskite (ppv, CaIrO(3)-type) phase synthesized from a natural pyroxene composition with 9 mol.% FeSiO(3). Our measured pressure-volume data from 12-106 GPa for the ppv phase yield a bulk modulus of 219(5) GPa and a zero-pressure volume of 164.9(6) A(3) when K'(0) = 4. The bulk modulus of ppv is 575(15) GPa at a pressure of 100 GPa. The transition pressure is lowered by the presence of Fe. Our x-ray diffraction data indicate the ppv phase can be formed at P > 109(4) GPa and 2,400(400) K, corresponding to approximately 400-550 km above the core-mantle boundary. Direct comparison of volumes of coexisting perovskite and CaIrO(3)-type phases at 80-106 GPa demonstrates that the ppv phase has a smaller volume than perovskite by 1.1(2)%. Using measured volumes together with the bulk modulus calculated from equation of state fits, we find that the bulk sound velocity decreases by 2.3(2.1)% across this transition at 120 GPa. Upon decompression without further heating, it was found that the ppv phase could still be observed at pressures as low at 12 GPa, and evidence for at least partial persistence to ambient conditions is also reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413868PMC
http://dx.doi.org/10.1073/pnas.0506811103DOI Listing

Publication Analysis

Top Keywords

ppv phase
16
equation state
12
bulk modulus
12
state postperovskite
8
phase synthesized
8
synthesized natural
8
gpa
8
phase
6
ppv
6
postperovskite phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!