Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M600298200DOI Listing

Publication Analysis

Top Keywords

extracellular domain
16
notch1 extracellular
12
notch1
9
microfibrillar proteins
8
proteins magp-1
8
magp-1 magp-2
8
activation mediated
8
notch1 heterodimer
8
notch signaling
8
magp-2
6

Similar Publications

Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.

View Article and Find Full Text PDF

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Background: Hypertrophic cardiomyopathy is the most common genetic cardiomyopathy and causes major adverse cardiovascular events (MACE). SVEP1 (Sushi, von Willebrand factor type A, epidermal growth factor, and pentraxin domain containing 1) is a large extracellular matrix protein that is detectable in the plasma. However, it is unknown whether adding plasma SVEP1 levels to clinical predictors including NT-proBNP (N-terminal pro-B-type natriuretic peptide) improves the prognostication in patients with hypertrophic cardiomyopathy.

View Article and Find Full Text PDF

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

The EphA2 transmembrane receptor is a key regulator of cellular growth, differentiation, and motility, and its overexpression in various cancers positions it as a promising biomarker for clinical cancer management. EphA2 signaling is mediated through ligand-induced dimerization, which stabilizes its dimeric state via conformational changes in the extracellular region and is linked to the intracellular kinase region via the transmembrane (TM) domain. Similar to many receptor tyrosine kinases, the juxtamembrane (JM) region, located between the TM and catalytic domains, coordinates with the TM domain to facilitate signal transduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!