Experiments were designed to determine whether 2 regions of the head direction cell circuit, the anterodorsal thalamic nucleus (ADN) and the dorsal tegmental nucleus (DTN), contribute to navigation. Rats were trained to perform a food-carrying task with and without blindfolds prior to receiving sham lesions or bilateral lesions of the ADN or DTN. ADN-lesioned rats were mildly impaired in both versions of the task. DTN-lesioned rats, however, were severely impaired and showed reduced heading accuracy in both task versions. These findings suggest that although both the DTN and ADN contribute to navigation based on path integration and landmarks, disruption of the head direction cell circuit at the level of the DTN has a significantly greater effect on spatial behavior than lesions of the ADN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/0735-7044.120.1.135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!