AI Article Synopsis

  • Alkylation of potassium selenosulfate with allylic halides results in the creation of Se-allyl seleno Bunte salts.
  • Upon reacting these salts with thiols at room temperature, mixed dialkyl selenosulfides are produced, which can undergo a rearrangement that involves losing selenium.
  • This reaction can lead to the formation of mixed dialkyl sulfides and introduces a new method for permanent chemical ligation, demonstrated in applications involving cysteine-containing tripeptides and 1-thioglucose tetraacetate.

Article Abstract

Alkylation of potassium selenosulfate with allylic halides gives Se-allyl seleno Bunte salts. On reaction with thiols at room temperature, these afford mixed dialkyl selenosulfides, which undergo 2,3-sigmatropic rearrangement with loss of selenium, either spontaneously or with assistance by triphenylphosphine, thereby providing mixed dialkyl sulfides and a new permanent chemical ligation method. The process is illustrated through the lipidation of cysteine-containing tripeptides and by the allylation of 1-thioglucose tetraacetate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658652PMC
http://dx.doi.org/10.1021/ja057521cDOI Listing

Publication Analysis

Top Keywords

chemical ligation
8
mixed dialkyl
8
allylic selenosulfide
4
selenosulfide rearrangement
4
rearrangement method
4
method chemical
4
ligation cysteine
4
cysteine thiols
4
thiols alkylation
4
alkylation potassium
4

Similar Publications

Diacylation of Peptides Enables the Construction of Functional Vesicles for Drug-Carrying Liposomes.

Angew Chem Int Ed Engl

January 2025

University of California, San Diego, Chemistry and Biochemistry, 9500 Gilman Drive, Urey Hall 4120, 92093, La Jolla, UNITED STATES OF AMERICA.

Membrane-forming phospholipids are generated in cells by enzymatic diacylation of non-amphiphilic polar head groups. Analogous non-enzymatic processes may have been relevant at the origin of life and could have practical utility in membrane synthesis. However, aqueous head group diacylation is challenging in the absence of enzymes.

View Article and Find Full Text PDF

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Alkane monooxygenase (AlkB) is the dominant enzyme that catalyzes the oxidation of liquid alkanes in the environment. Two recent structural models derived from cryo-electron microscopy (cryo-EM) reveal an unusual active site: a histidine-rich center that binds two iron ions without a bridging ligand. To ensure that potential photoreduction and radiation damage are not responsible for the absence of a bridging ligand in the cryo-EM structures, spectroscopic methods are needed.

View Article and Find Full Text PDF

Small-molecule fluorophores are invaluable tools for fluorescence imaging. However, means for their covalent conjugation to the target proteins limit applications in multicolor imaging. Here, we identify 2-[(alkylhio)(ryl)ethylene]alononitrile (TAMM) molecules reacting with 1,2-aminothiol at a labeling rate over 10 M s through detailed mechanistic investigation.

View Article and Find Full Text PDF

Structural Basis of High-Precision Protein Ligation and Its Application.

J Am Chem Soc

January 2025

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore.

Enzyme-catalyzed protein modifications have become invaluable in diverse applications, outperforming chemical methods in terms of precision, conjugation efficiency, and biological compatibility. Despite significant advances in ligases, such as sortase A and OaAEP1, their use in heterogeneous biological environments remains constrained by limited target sequence specificity. In 2021, Lupas' group introduced Connectase, a family of repurposed archaeal proteases for protein ligations, but its low processivity and lack of structural information have impeded further engineering for practical biological and biophysical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!