beta-defensins are a large family of multiple disulfide-bonded peptides occurring in mammals and birds. They play an important role in the innate immune system, directly killing microbial organisms. Recent research has demonstrated that beta-defensins are important for other biological functions beyond antimicrobial effects, including inhibition of viral infection, interaction with Toll-like receptors, chemotactic effects, and sperm function. The corresponding broad spectrum of activities makes this peptide class an important subject and tool in immunologic research. In this review, we summarize the current status of the routes to obtain synthetic beta-defensins, their major structural properties and structure-activity relationship.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.749 | DOI Listing |
Chem Biol Drug Des
January 2025
Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB.
View Article and Find Full Text PDFExpert Opin Ther Pat
January 2025
Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
Introduction: The von Hippel-Lindau (VHL) E3 ubiquitin ligase has seen extensive research due to its involvement in the ubiquitin proteasome system and role as a tumor suppressor within the hypoxia signaling pathway. VHL has become an attractive target for proteolysis targeting chimeras (PROTACs), bifunctional molecules that can induce degradation of neo-substrate proteins. The development of VHL inhibitors and PROTACs has seen rapid development since disclosure of the first non-peptidic VHL ligand (2012).
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
Quinolone antibiotics are known for their antibacterial activity by inhibiting the enzyme DNA gyrase. Inspired by their mechanism, new compounds combining 1,4-dihydropyrimidine, a quinolone isostere, with pyridine/pyrimidine rings were synthesized. These derivatives showed antibacterial effects, likely through DNA gyrase inhibition, as supported by molecular docking and dynamics simulations.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Background: Lysosome is a highly heterogeneous membranous organelle in eukaryotic cells, which regulates many physiological processes in the cell. Studies have found that lysosomal dysfunction disrupts cellular homeostasis and is associated with Parkinson's disease (PD). Transmembrane protein 175 (TMEM175) is a lysosomal cation channel whose activity is essential for lysosomal homeostasis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Human organic cation transporter 2 (hOCT2/SLC22A2) is a key drug transporter that facilitates the transport of endogenous and exogenous organic cations. Because hOCT2 is responsible for the development of adverse effects caused by platinum-based anti-cancer agents, drugs with OCT2 inhibitory effects may serve as prophylactic agents against the toxicity of platinum-based anti-cancer agents. In the present study, we established a machine learning-based quantitative structure-activity relationship (QSAR) model for hOCT2 inhibitors based on the public ChEMBL database and explored novel hOCT2 inhibitors among the FDA-approved drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!