Long interspersed element-1 (L1) is an autonomous retroelement that is active in the human genome. The proposed mechanism of insertion for L1 suggests that cleavage of both strands of genomic DNA is required. We demonstrate that L1 expression leads to a high level of double-strand break (DSB) formation in DNA using immunolocalization of gamma-H2AX foci and the COMET assay. Similar to its role in mediating DSB repair in response to radiation, ATM is required for L1-induced gamma-H2AX foci and for L1 retrotransposition. This is the first characterization of a DNA repair response from expression of a non-long terminal repeat (non-LTR) retrotransposon in mammalian cells as well as the first demonstration that a host DNA repair gene is required for successful integration. Notably, the number of L1-induced DSBs is greater than the predicted numbers of successful insertions, suggesting a significant degree of inefficiency during the integration process. This result suggests that the endonuclease activity of endogenously expressed L1 elements could contribute to DSB formation in germ-line and somatic tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136747 | PMC |
http://dx.doi.org/10.1016/j.jmb.2006.01.089 | DOI Listing |
PLoS One
December 2024
Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy.
The zebrafish (Danio rerio) is a valuable model organism for studying human biology due to its easy genetic manipulation and small size. It is optically transparent and shares genetic similarities with humans, making it ideal for studying developmental processes, diseases, and drug screening via imaging-based approaches. Solid malignant tumors often contain hypoxic areas that stimulate the release of extracellular vesicles (EVs), lipid-bound structures released by cells into the extracellular space, that facilitate short- and long-range intercellular communication and metastatization.
View Article and Find Full Text PDFBackground: The tin (Sn) prefilter technique is a recently introduced dose-saving technique in computed tomography (CT). This study investigates whether there is an altered molecular biological response in blood cells using the tin prefiltering technique.
Methods: Blood from 6 donors was X-irradiated ex-vivo with 20 mGy full dose (FD) protocols (Sn 150 kV, 150 kV, and 120 kV) and a tin prefiltered 16.
Comput Struct Biotechnol J
December 2024
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.
In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
L'Oréal Research and Innovation, Bangalore 560067, India.
The skin hydration level is a key factor that influences the physical and mechanical properties of the skin. The stratum corneum (SC), the outermost layer of the epidermis, is responsible for the skin's barrier function. In this study, we investigated the role of a unique composition of extract for its ability to activate CD44, a cell-surface receptor of hyaluronic acid, and aquaporin-3, a water-transporting protein, in human keratinocytes (HaCaT).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany.
Hypoxia-induced radioresistance limits therapeutic success in cancer. In addition, p53 mutations are widespread in tumors including non-small cell lung carcinomas (NSCLCs), and they might modify the radiation response of hypoxic tumor cells. We therefore analyzed the DNA damage and inflammatory response in chronically hypoxic (1% O, 48 h) p53 null H358 NSCLC cells after X-ray exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!