In order to search for small tumor-specific deletions in 11p13 we analysed DNA isolated from 30 fresh Wilms' tumor (WT) samples with pulsed field gel electrophoresis. For these studies we have isolated new probes from the ends of several Notl fragments. Using these and previously described probes from 11p13 we first completed and extended the existing map of the 11p13 region. The analysis of the tumor material showed that (I) tumor-specific deletions were very rare: one homozygous deletion out of 30 tumors analysed, (2) hemizygous deletions were not observed in any of the tumors. The homozygous deletion in one patient spans 220 kb and is composed of a tumor-specific translocation associated with a deletion on one chromosome and a deletion of about 220 kb on the other chromosome at the same site. The WT-33 Wilms' tumor candidate gene maps to this deleted segment. A small constitutional deletion of 1,300 kb was identified in a patient with WT and genital tract malformations. These results suggest that in the majority of sporadic WT loss of gene function is due to subtle alterations in the gene, e.g., point mutations or very small deletions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.2870030203DOI Listing

Publication Analysis

Top Keywords

pulsed field
8
field gel
8
gel electrophoresis
8
deletions 11p13
8
tumor-specific deletions
8
wilms' tumor
8
homozygous deletion
8
deletions
5
deletion
5
direct pulsed
4

Similar Publications

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.

View Article and Find Full Text PDF

Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!