The release of stored Ca2+ from intracellular pools triggers a variety of important neuronal processes. Physiological and pharmacological evidence has indicated the presence of caffeine-sensitive intracellular pools that are distinct from the well-characterized inositol 1,4,5,-trisphosphate (IP3)-gated pools. Here we report that the brain ryanodine receptor functions as a caffeine- and ryanodine-sensitive Ca2+ release channel that is distinct from the brain IP3 receptor. The brain ryanodine receptor has been purified 6700-fold with no change in [3H]ryanodine binding affinity and shown to be a homotetramer composed of an approximately 500 kd protein subunit, which is identified by anti-peptide antibodies against the skeletal and cardiac muscle ryanodine receptors. Our results demonstrate that the brain ryanodine receptor functions as a caffeine-sensitive Ca2+ release channel and thus is the likely gating mechanism for intracellular caffeine-sensitive Ca2+ pools in neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0896-6273(91)90070-gDOI Listing

Publication Analysis

Top Keywords

brain ryanodine
16
ryanodine receptor
16
release channel
12
intracellular pools
8
receptor functions
8
ca2+ release
8
caffeine-sensitive ca2+
8
brain
5
receptor
5
caffeine-sensitive
4

Similar Publications

Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons.

Biomolecules

December 2024

Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine.

The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells.

View Article and Find Full Text PDF

Background: This study investigates the effects of intranasal dantrolene nanoparticles on inflammation and programmed cell death by pyroptosis in 5XFAD Alzheimer's Disease (AD) mice.

Methods: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal dantrolene nanoparticles (5 mg/kg), daily, Monday to Friday, for 12 weeks continuously, starting at 9 months of age. Blood and brain were harvested at 13 months of age, one month after completion of 12 weeks intranasal dantrolene nanoparticle treatment.

View Article and Find Full Text PDF

Hypoxia increases intracellular calcium in glutamate-activated horizontal cells of goldfish retina via mitochondrial K channels and intracellular stores.

Comp Biochem Physiol A Mol Integr Physiol

February 2025

Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada. Electronic address:

Central neurons of the common goldfish (Carassius auratus) are exceptional in their capacity to survive Ca-induced excitotoxicity and cell death during hypoxia. Horizontal cells (HCs) are inhibitory interneurons of the retina that are tonically depolarized by the neurotransmitter, glutamate, yet preserve intracellular Ca homeostasis. In HCs isolated from goldfish, and in the absence of glutamatergic input, intracellular Ca concentration ([Ca]) is protected from prolonged exposure to hypoxia by mitochondrial ATP-dependent K (mK) channel activity.

View Article and Find Full Text PDF

Introduction: Previous evidence indicates that gestational hypoxia disrupts cerebrovascular development, increasing the risk of intracranial hemorrhage and stroke in the newborn. Due to the role of cytosolic Ca in regulating vascular smooth muscle (VSM) tone and fetal cerebrovascular blood flow, understanding Ca signals can offer insight into the pathophysiological disruptions taking place in hypoxia-related perinatal cerebrovascular disease. This study aimed to determine the extent to which gestational hypoxia disrupts local Ca sparks and whole-cell Ca signals and coupling with BK channel activity.

View Article and Find Full Text PDF

Dantrolene paradoxically exacerbates short-term brain glucose hypometabolism, hippocampal damage and neuroinflammation induced by status epilepticus in the rat lithium-pilocarpine model.

Eur J Pharmacol

December 2024

Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain.

Article Synopsis
  • Status epilepticus (SE) is a serious neurological condition marked by prolonged seizures that can lead to brain damage through increased calcium levels, which contribute to excitotoxicity.
  • Dantrolene, a drug that blocks ryanodine receptors, was tested for its potential neuroprotective effects following SE in rats but was found to worsen neurodegeneration and inflammation, increasing glucose hypometabolism and causing significant body weight loss.
  • The study's findings contrast with previous reports of dantrolene's protective effects, suggesting the need for further research to understand the differing mechanisms at play in various epilepsy models and identify specific ryanodine receptor isoforms involved.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!