Recent evidence suggests that glucagon-like peptide-1 (GLP-1) enhances recovery of left ventricular (LV) function after transient coronary artery occlusion. However, it is uncertain whether GLP-1 has direct effects on normal or ischemic myocardium and whether the mechanism involves increased myocardial glucose uptake. LV function and myocardial glucose uptake and lactate production were measured under basal conditions and after 30 min of low-flow ischemia and 30 min of reperfusion in the presence and absence of GLP-1-(7-36) amide. The response was compared with standard buffer alone or buffer containing insulin (100 microU/ml). GLP-1 decreased the left ventricular developed pressure (baseline: 100 +/- 2 mm Hg; GLP-1: 75 +/- 3 mm Hg, p < 0.05) and LV dP/dt (baseline: 4876 +/- 65 mm Hg/s; GLP-1: 4353 +/- 76 mm Hg/s, p < 0.05) in normal hearts. GLP-1 increased myocardial glucose uptake (baseline: 33 +/- 3 micromol/min/g; GLP-1: 81 +/- 7 micromol/min/g, p < 0.05) by increasing nitric oxide production and glucose transporter (GLUT)-1 translocation. GLP-1 enhanced recovery after 30 min of low-flow ischemia with significant improvements in LV end-diastolic pressure (control: 13 +/- 4 mm Hg; GLP-1: 3 +/- 2 mm Hg, p < 0.05) and LV developed pressure (control: 66 +/- 6 mm Hg; GLP-1: 98 +/- 5 mm Hg, p < 0.05). GLP-1 increased LV function, myocardial glucose uptake, and GLUT-1 and GLUT-4 translocation during reperfusion to an extent similar to that with insulin. GLP-1 has direct effects on the normal heart, reducing contractility, but increasing myocardial glucose uptake through a non-Akt-1-dependent mechanism, distinct from the actions of insulin. However, GLP-1 increased myocardial glucose uptake and enhanced recovery of cardiac function after low-flow ischemia in a fashion similar to that of insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.106.100982 | DOI Listing |
Hypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
June 2023
Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan.
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Turku PET Centre, University of Turku, Turku, Finland.
Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, fear to gain weight, and a distorted body image. Mu-opioid receptor (MOR) functions as a part of complex opioid system and supports both homeostatic and hedonic control of eating behavior. Thirteen patients with AN and thirteen healthy controls (HC) were included in this study.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China. Electronic address:
Hepatocellular carcinoma (HCC), known for its high malignancy, exhibits a critical feature in its progression through the alteration of metabolic pathways. Our study initially observed an increase in hyaluronic acid (HA) secretion by HCC cells through ELISA analysis. Further protein-protein interaction (PPI) network analysis highlighted CD44 and HAS2 as critical nodes, suggesting their pivotal roles in HA metabolism.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Orthopaedics, Nanchang People's Hospital (The Third Hospital of Nanchang), Nanchang City, Jiangxi Province, China.
Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!