We have recently established a method to generate dendritic cells from mouse embryonic stem cells. By introducing exogenous genes into embryonic stem cells and subsequently inducing differentiation to dendritic cells (ES-DC), we can now readily generate transfectant ES-DC expressing the transgenes. A previous study revealed that the transfer of genetically modified ES-DC expressing a model antigen, ovalbumin, protected the recipient mice from a challenge with an ovalbumin-expressing tumor. In the present study, we examined the capacity of ES-DC expressing mouse homologue of human glypican-3, a recently identified oncofetal antigen expressed in human melanoma and hepatocellular carcinoma, to elicit protective immunity against glypican-3-expressing mouse tumors. CTLs specific to multiple glypican-3 epitopes were primed by the in vivo transfer of glypican-3-transfectant ES-DC (ES-DC-GPC3). The transfer of ES-DC-GPC3 protected the recipient mice from subsequent challenge with B16-F10 melanoma, naturally expressing glypican-3, and with glypican-3-transfectant MCA205 sarcoma. The treatment with ES-DC-GPC3 was also highly effective against i.v. injected B16-F10. No harmful side effects, such as autoimmunity, were observed for these treatments. The depletion experiments and immunohistochemical analyses suggest that both CD8+ and CD4+ T cells contributed to the observed antitumor effect. In conclusion, the usefulness of glypican-3 as a target antigen for antimelanoma immunotherapy was thus shown in the mouse model using the ES-DC system. Human dendritic cells expressing glypican-3 would be a promising means for therapy of melanoma and hepatocellular carcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-2090DOI Listing

Publication Analysis

Top Keywords

dendritic cells
16
embryonic stem
12
expressing glypican-3
12
es-dc expressing
12
cells expressing
8
glypican-3 identified
8
identified oncofetal
8
oncofetal antigen
8
protective immunity
8
stem cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!