Pancreatic cancer is genetically complex, and without effective therapy. Mutations in the Kirsten-ras (K-ras) oncogene occur early and frequently (approximately 90%) during pancreatic cancer development and progression. In this context, K-ras represents a potential molecular target for the therapy of this highly aggressive cancer. We now show that a bipartite adenovirus expressing a novel cancer-specific apoptosis-inducing cytokine gene, mda-7/interleukin-24 (IL-24), and a K-ras AS gene, but not either gene alone, promotes growth suppression, induction of apoptosis, and suppression of tumor development mediated by K-ras mutant pancreatic cancer cells. Equally, the combination of an adenovirus expressing mda-7/IL-24 and pharmacologic and genetic agents simultaneously blocking K-ras or downstream extracellular regulated kinase 1/2 signaling also promotes similar inhibitory effects on the growth and survival of K-ras mutant pancreatic carcinoma cells. This activity correlates with the reversal of a translational block in mda-7/IL-24 mRNA in pancreatic cancer cells that limits message association with polysomes, thereby impeding translation into protein. Our study provides support for a "dual molecular targeted therapy" involving oncogene inhibition and selective cancer apoptosis-inducing gene expression with potential for effectively treating an invariably fatal cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-05-3510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!