Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The receptor protein tyrosine phosphatase beta (RPTPbeta) is a functional biomarker for several solid tumor types. RPTPbeta expression is largely restricted to the central nervous system and overexpressed primarily in astrocytic tumors. RPTPbeta is known to facilitate tumor cell adhesion and migration through interactions with extracellular matrix components and the growth factor pleiotrophin. Here, we show that RPTPbeta is expressed in a variety of solid tumor types with low expression in normal tissue. To assess RPTPbeta as a potential target for treatment of glioblastoma and other cancers, antibodies directed to RPTPbeta have been developed and profiled in vitro and in vivo. The recombinant extracellular domain of human short RPTPbeta was used to immunize mice and generate monoclonal antibodies that selectively recognize RPTPbeta and bind to the antigen with low nanomolar affinities. Moreover, these antibodies recognized the target on living tumor cells as measured by flow cytometry. These antibodies killed glioma cells in vitro when coupled to the cytotoxin saporin either directly or via a secondary antibody. Finally, in vivo studies showed that an anti-RPTPbeta immunotoxin (7E4B11-SAP) could significantly delay human U87 glioma tumors in a mouse xenograft model. Unconjugated 7E4B11 provides a modest but statistically significant tumor growth delay when delivered systemically in mice bearing U87 glioma tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-05-1221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!