Naturally-occurring variation in K(+) concentrations between plant genotypes is potentially exploitable in a number of ways, including altering the relationship between K(+) accumulation and growth, enhancing salinity resistance, or improving forage quality. However, achieving these requires greater insight into the genetic basis of the variation in tissue K(+) concentrations. To this end, K(+) concentrations were measured in the shoots of 70 Arabidopsis thaliana accessions and a Cape Verdi Island/Landsberg erecta recombinant inbred line (RIL) population. The shoot K(+) concentrations expressed on the basis of fresh matter (KFM) or dry matter (KDM) were both broadly and normally distributed as was the shoot dry matter content per unit fresh weight (DMC). Using the data from the RILs, four quantitative trait loci (QTL) were identified for KFM and three for KDM. These were located on chromosomes 2, 3, 4, and 5. Two of the QTLs for KFM overlapped with those for KDM. None of these QTLs overlapped with those for fresh weight or dry weight, but the QTL for KDM located on chromosome 3 overlapped with one for DMC. In silico analysis was used to identify known or putative K(+) and cation transporter genes whose loci overlapped with the QTLs. In most cases, multiple genes were identified and the possible role of their gene products in determining shoot K(+) concentrations is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erj081DOI Listing

Publication Analysis

Top Keywords

shoots arabidopsis
8
arabidopsis thaliana
8
shoot concentrations
8
dry matter
8
fresh weight
8
kdm located
8
concentrations
6
genetic mapping
4
mapping natural
4
natural variation
4

Similar Publications

Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.

View Article and Find Full Text PDF

The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.

View Article and Find Full Text PDF

Improving Ni Tolerance of Arabidopsis by Overexpressing Bacterial Gene Encoding a Membrane-Bound Exporter of Ni.

Int J Mol Sci

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.

View Article and Find Full Text PDF
Article Synopsis
  • White clover is susceptible to drought stress, and recent research identified the NAC transcription factor TrNAC002, which plays a key role in regulating plant responses to this stress.
  • Overexpression of TrNAC002 leads to enhanced leaf size, increased lateral root growth, and higher expression of genes related to vegetative growth, allowing plants to better withstand drought conditions.
  • The study shows that modified plants have lower reactive oxygen species levels and higher flavonoid content, which correlates with improved survival under drought conditions compared to wild-type plants.
View Article and Find Full Text PDF
Article Synopsis
  • Chinese cabbage is a key vegetable in southern China, but excess nitrogen fertilizers cause high nitrate levels, reducing nutritional value; therefore, breeding for better nitrogen utilization and lower nitrate accumulation is crucial.
  • Ammonium transporter 1;2 (BcAMT1;2) enhances growth and decreases nitrate content in flowering Chinese cabbage but the mechanisms behind its effects are still unclear.
  • Interaction studies show that BcLBD41 and BcMAMYB proteins influence BcAMT1;2 activity, affecting nitrogen metabolism and plant growth under varying nitrogen conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!