Naturally-occurring variation in K(+) concentrations between plant genotypes is potentially exploitable in a number of ways, including altering the relationship between K(+) accumulation and growth, enhancing salinity resistance, or improving forage quality. However, achieving these requires greater insight into the genetic basis of the variation in tissue K(+) concentrations. To this end, K(+) concentrations were measured in the shoots of 70 Arabidopsis thaliana accessions and a Cape Verdi Island/Landsberg erecta recombinant inbred line (RIL) population. The shoot K(+) concentrations expressed on the basis of fresh matter (KFM) or dry matter (KDM) were both broadly and normally distributed as was the shoot dry matter content per unit fresh weight (DMC). Using the data from the RILs, four quantitative trait loci (QTL) were identified for KFM and three for KDM. These were located on chromosomes 2, 3, 4, and 5. Two of the QTLs for KFM overlapped with those for KDM. None of these QTLs overlapped with those for fresh weight or dry weight, but the QTL for KDM located on chromosome 3 overlapped with one for DMC. In silico analysis was used to identify known or putative K(+) and cation transporter genes whose loci overlapped with the QTLs. In most cases, multiple genes were identified and the possible role of their gene products in determining shoot K(+) concentrations is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erj081 | DOI Listing |
Gene
January 2025
Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou 730070, China.
Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland.
The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Plant Physiol Biochem
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!