Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer.

Biomaterials

Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.

Published: June 2006

Intravascular stent-assisted gene transfer is an advanced approach for the therapy of vascular diseases such as atherosclerosis and stenosis. This approach requires a stent that allows local and efficient administration of therapeutic genes to the target cells at the vascular wall. To create such a stent, a method was developed for loading plasmid DNA onto the metal surface. The method involves the formation of self-assembled monolayer on the noble metal surface followed by electrostatic layer-by-layer (LBL) assembly of a cationic lipid/plasmid DNA complex and free plasmid DNA. In this in vitro feasibility study, the thin plainer film and the wire of gold were used as a substrate. The LBL assembly process was characterized by surface plasmon resonance spectroscopy and static contact angle measurement. Plasmid DNA loaded in the multilayer exhibited improved resistance against nuclease digestion. When cultured directly on the DNA-loaded surface, cells were transfected to express exogenous gene in the DNA loading-dependent manner. Plasmid DNA could also be transferred to endothelial cells from its apical side by placing the DNA-loaded gold wire onto the cell layer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.02.004DOI Listing

Publication Analysis

Top Keywords

plasmid dna
20
assembly cationic
8
stent-assisted gene
8
gene transfer
8
metal surface
8
lbl assembly
8
dna
7
plasmid
5
surface
5
layer-by-layer assembly
4

Similar Publications

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.

View Article and Find Full Text PDF

Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin.

bioRxiv

December 2024

Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.

Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!