Under normal conditions, expression of the p75 neurotrophin receptor (p75NTR) by sympathetic neurons can increase the affinity of the signaling receptor, trkA, to target-derived nerve growth factor (NGF) at distal axons. We have previously reported that sprouting of sympathetic axons into NGF-rich target tissues is enhanced when p75NTR expression is perturbed, leading to the postulate that p75NTR may restrain sympathetic sprouting in response to elevated NGF levels. These observations were made using mice having a null mutation of the third p75NTR exon, a line that may express a hypomorphic form of this receptor. Since mice carrying a null mutation of the fourth p75NTR exon may not express a similar splice variant, we sought to determine whether these animals possess the same phenotype of enhanced sympathetic sprouting in response to elevated levels of NGF. Both lines of transgenic mice lacking p75NTR displayed similar degrees of sympathetic axonal sprouting into the cerebellum and trigeminal ganglia, two target tissues having elevated levels of NGF protein. Furthermore, the densities of sympathetic axons in both targets were significantly greater than those observed in age-matched NGF transgenic siblings expressing full-length p75NTR. Our new findings provide a comparative analysis of the phenotype in two independent mutations of the same neurotrophin receptor, revealing that p75NTR plays an important role in restricting sympathetic sprouting in response to higher NGF levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2005.12.022DOI Listing

Publication Analysis

Top Keywords

sympathetic sprouting
16
sprouting response
16
neurotrophin receptor
12
response elevated
12
elevated levels
12
p75 neurotrophin
8
sympathetic
8
nerve growth
8
growth factor
8
transgenic mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!