We evaluated peripheral nerve regeneration using a tubular nerve guide of resorbable collagen filled with either bone marrow-derived cells (BMDCs) in Dulbecco's cell culture medium (DMEM) or with DMEM alone (control). The control group received just the culture medium (vehicle). The left sciatic nerves of ten isogenic mice were transected and the tubular nerve guides were sutured to the end of the proximal and distal nerve stumps. Motor function was tested at 2, 4 and 6 weeks after surgery using the walking track test. The pawprints were analyzed and the print lengths (PL) were measured to evaluate functional recovery. After 6 weeks, mice were anesthetized, perfused transcardially with fixative containing aldehydes, and the sciatic nerves and tubes were dissected and processed for scanning and transmission electron microscopy. Scanning electron microscopy of the collagen tube revealed that the tube wall became progressively thinner after surgery, proving that the tube can be resorbed in vivo. Quantitative analysis of the regenerating nerves showed that the number of myelinated fibers and the myelin area were significantly increased in the experimental group. Also, motor function recovery was faster in animals that received the cell grafts. These results indicate that the collagen tube filled with BMDCs provided an adequate and favorable environment for the growth and myelination of regenerating axons compared to the collagen tube alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2005.12.019 | DOI Listing |
The production of mammalian cells in large quantities is essential for various applications. However, scaling up cell culture using existing bioreactors poses significant technical challenges and high costs. To address this, we previously developed an innovative 3D culture system, known as the AlgTube cell culture system, for high-density cell cultivation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, PR China; The 2011 Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Affiliated Hospital of Zunyi Medical University, PR China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, PR China. Electronic address:
Chronic non-healing wounds are a common complication of diabetes, marked by impaired angiogenesis. This study explores how exosomes (Exo-miR-1248) from miR-1248-overexpressing adipose-derived stem cells enhance diabetic wound healing by modulating endothelial cell function. Adipose-derived stem cells were transfected with a lentivirus carrying miR-1248 to produce Exo-miR-1248, isolated via differential centrifugation.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:
Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!