Transcription from the dctA gene, which encodes an organic acid transporter in the root-colonizing bacterium Pseudomonas chlororaphis O6, is under complex regulatory control. Promoter sequence analysis revealed an RpoN binding site. The regulation of transcript accumulation by the level of ammonium ions in the growth medium confirmed RpoN regulation, even in the presence of glucose. A dctA mutant colonized tobacco roots to a lesser extent than the wild-type mutant during early seedling development. Colonization by the dctA mutant, as compared to the wild type, also reduced the level of systemically induced resistance against the soft rot pathogen Erwinia carotovora SCC1. We ascribe this reduced colonization to the inability of the mutant to utilize certain organic acid components in the root exudates. The dctA mutant failed to grow on succinate and fumarate, and showed reduced growth on malate. All altered properties of the mutant were complemented by the full-length dctA gene. We propose that organic acids in root exudates may provide important nutrient sources for the beneficial root-colonizing pseudomonad.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2006.00092.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!