We predict a novel type of Josephson effect to occur in triplet-superconductor-ferromagnet-triplet-superconductor Josephson junctions. We show that the Josephson current, IJ, exhibits a rich dependence on the relative orientation between the ferromagnetic moment and the d vectors of the superconductors. This dependence can be used to build several types of Josephson current switches. Moreover, we predict an unconventional sign change of IJ with increasing temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.047009DOI Listing

Publication Analysis

Top Keywords

josephson current
8
novel josephson
4
josephson triplet-superconductor-ferromagnet-triplet-superconductor
4
triplet-superconductor-ferromagnet-triplet-superconductor junctions
4
junctions predict
4
predict novel
4
novel type
4
josephson
4
type josephson
4
josephson occur
4

Similar Publications

Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport.

View Article and Find Full Text PDF

The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF

Josephson diode effect in one-dimensional quantum wires connected to superconductors with mixed singlet-triplet pairing.

J Phys Condens Matter

January 2025

School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.

The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.

View Article and Find Full Text PDF

φ Josephson Junction Induced by Altermagnetism.

Phys Rev Lett

November 2024

Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan.

We study the Josephson effect in a superconductor-altermagnet-superconductor junction. We find anomalous phenomena, including 0-π transition and multinodal current-phase relations. Similar to a d-wave superconductor, a d-wave altermagnet can support a φ junction where free-energy minima locate neither φ=0 nor ±π with double degeneracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!