ZnO is a wide band gap, naturally n-type semiconductor with great promise for optoelectronic applications; the main obstacle yet to be overcome is p-type doping. Nitrogen, the most promising candidate currently being pursued as a dopant, has been predicted to preferentially incorporate into the ZnO lattice in the form of a N-2 molecule at an O site when a plasma source is used, leading to compensation rather than p-type doping. We demonstrate this to be incorrect by using N K-edge x-ray absorption spectra and comparing them with first-principles calculations showing that nitrogen, in fact, incorporates substitutionally at O sites where it is expected to act as an acceptor. We also detect the formation of molecular nitrogen upon annealing. These results suggest that effective p-type doping of ZnO with N may be possible only for low-temperature growth processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.045504 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Photoelectrochemical cells (PECs) can directly utilize solar energy to drive chemical reactions to produce fuels and chemicals. Oxide-based photoelectrodes in general exhibit enhanced stability against photocorrosion, which is a critical advantage for building a sustainable PEC. However, most oxide-based semiconductors are n-type, and p-type oxides that can be used as photocathodes are limited.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
A device architecture based on heterostructure WSe/organic semiconductor field-effect transistors (FETs) is demonstrated in which ambipolar conduction is virtually eliminated, resulting in essentially unipolar FETs realized from an ambipolar semiconductor. For p-channel FETs, an electron-accepting organic semiconductor such as hexadecafluorocopperphthalocyanine (FCuPc) is used to form a heterolayer on top of WSe to effectively trap any undesirable electron currents. For n-channel FETs, a hole-accepting organic semiconductor such as pentacene is used to reduce the hole currents without affecting the electron currents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China.
Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, 37673, Korea (the Republic of).
Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!