We report observations of entanglement of two remote atomic qubits, achieved by generating an entangled state of an atomic qubit and a single photon at site , transmitting the photon to site in an adjacent laboratory through an optical fiber, and converting the photon into an atomic qubit. Entanglement of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization correlations in violation of the Bell inequality [EQUATION: SEE TEXT]. We experimentally determine [EQUATION: SEE TEXT]. Entanglement of two remote atomic qubits, each qubit consisting of two independent spin wave excitations, and reversible, coherent transfer of entanglement between matter and light represent important advances in quantum information science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.030405 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, 4056, Switzerland.
Many-body interactions in metal-organic frameworks (MOFs) are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy (MA) induced by the substrate and still not well understood. Here, on-surface coordination chemistry is used to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone (PTO) precursors as ligands.
View Article and Find Full Text PDFNanophotonics
November 2024
Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.
Efforts to harness quantum hardware relying on quantum mechanical principles have been steadily progressing. The search for novel material platforms that could spur the progress by providing new functionalities for solving the outstanding technological problems is however still active. Any physical property presenting two distinct energy states that can be found in a long-lived superposition state can serve as a quantum bit (qubit), the basic information processing unit in quantum technologies.
View Article and Find Full Text PDFIn large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state.
View Article and Find Full Text PDFScience
November 2024
Department of Physics, ETH Zürich, 8093 Zürich, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!