Acoustic negative refractions with backward-wave (BW) effects were both theoretically and experimentally established in the second band of a two-dimensional (2D) triangular sonic crystal (SC). Intense Bragg scatterings result in the extreme deformation of the second band equifrequency surface (EFS) into two classes: one around the K point and the other around the point of the reduced Brillouin zone. The two classes can lead to BW negative refractions (BWNRs) but with reverse negative refraction dependences on frequencies and incident angles. Not only BWNR but BW positive refraction can be present at EFSs around the K point, so it is possible to enhance the resolution of acoustic waves with a subdiffraction limit regardless of refractions, which is no analogy in both left-handed material and SCs' first band. These abundant characters make refractions in the second band distinguished.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.014301DOI Listing

Publication Analysis

Top Keywords

second band
16
negative refractions
12
refractions second
8
sonic crystal
8
refractions
5
band
5
acoustic backward-wave
4
negative
4
backward-wave negative
4
second
4

Similar Publications

Two-dimensional (2D) ferromagnetic (FM) semiconductors hold great promise for the next generation spintronics devices. By performing density functional theory first-principles calculations, both CeF and CeFCl monolayers are studied, our calculation results show that CeF is a FM semiconductor with sizable magneto-crystalline anisotropy energy (MAE) and high Curie temperature (290 K), but a smaller band gap and thermal instability indicate that it is not applicable at higher temperature. Its isoelectronic analogue, the CeFCl monolayer, is a bipolar FM semiconductor, its dynamics, elastic, and thermal stability are confirmed, our results demonstrate promising applications of the CeFCl monolayer for next-generation spintronic devices owing to its high Curie temperature (200 K), stable semiconducting features, and stability.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

The Best of Both Worlds: ΔDFT Describes Multiresonance TADF Emitters with Wave-Function Accuracy at Density-Functional Cost.

J Phys Chem Lett

January 2025

Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.

With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size.

View Article and Find Full Text PDF

The study presents two imported malaria cases with a history of travel to malaria-endemic areas and replied late response to treatment. In the blood preparations of the first case, dot-shaped nucleus structures were identified in the erythrocytes, which looked different from the classical erythrocytic forms. In the SD-Pf/Pan test, bands were obtained for both P.

View Article and Find Full Text PDF

Objective: Inferior pole patellar fractures (IPPFs) pose a significant challenge due to their complex fracture patterns and high risk of complications associated with current treatment methods. This study aims to (1) characterize the fracture patterns of IPPFs using fracture mapping and (2) compare the biomechanical stability and clinical outcomes of treatment with anchor suture with patellar cerclage versus Kirschner-wire tension band combined with patellar cerclage.

Methods: (1) A retrospective analysis was conducted on 61 patients with IPPF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!