Directed spontaneous emission from an extended ensemble of N atoms: timing is everything.

Phys Rev Lett

Max-Planck-Institut für Quantenoptik, D-85748, Garching, Germany.

Published: January 2006

A collection of static atoms is fixed in a crystal at a low temperature and prepared by a pulse of incident radiation of wave vector . The atoms are well described by an entangled Dicke-like state, in which each atom carries a characteristic phase factor exp(ik0.r(j)), where is the atomic position in the crystal. It is shown that a single photon absorbed by the N atoms will be followed by spontaneous emission in the same direction. Furthermore, phase matched emission is found when one photon is absorbed by N atoms followed by two-photon down-conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.010501DOI Listing

Publication Analysis

Top Keywords

spontaneous emission
8
photon absorbed
8
absorbed atoms
8
atoms
5
directed spontaneous
4
emission extended
4
extended ensemble
4
ensemble atoms
4
atoms timing
4
timing collection
4

Similar Publications

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.

View Article and Find Full Text PDF

We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.

View Article and Find Full Text PDF

A case of subcutaneous metastatic malignant melanoma of the left medial ankle: a case report and review of literature.

J Med Case Rep

December 2024

College of Medicine and Life Sciences, Division of Plastic and Reconstructive Surgery, University of Toledo, 3000 Arlington Ave, Toledo, OH, 43614, USA.

Background: Although rare, melanoma confined to the dermis or subcutaneous tissue without evidence of a primary cutaneous site should provoke consideration of melanoma of unknown primary. This diagnosis carries a favorable prognosis when compared with cutaneous metastatic melanoma. Several hypotheses have been proposed for how melanoma of unknown primary develops, two of which were considered in our patient case: (1) spontaneous regression of the primary tumor following metastasis or (2) the traumatic implantation of ectopic melanocytic cells in other tissues, such as the subcutaneous tissue.

View Article and Find Full Text PDF

The accurate and timely assessment of wheat freshness is not only a complex scientific endeavor but also a critical aspect of grain storage safety. This study introduces an innovative approach for evaluating wheat freshness by integrating machine learning algorithms with Biophoton Analytical Technology (BPAT). Initially, spontaneous ultraweak photon emissions from wheat are measured, and various statistical descriptors are derived to construct a feature vector.

View Article and Find Full Text PDF

Metastable supramolecular polymerization under kinetic control has recently been recognized as a closer way to biosystem than thermodynamic process. While impressive works on metastable supramolecular systems have been reported, the library of available non-covalent driving modes is still small and a simple yet versatile solution is highly desirable to design for easily regulating the energy landscapes of metastable aggregation. Herein, we propose a coopetition-driven metastability strategy for parallel/perpendicular aromatic stacking to construct metastable supramolecular polymers derived from a class of simple monomers consisting of lateral indoles and aromatic core.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!