CO adsorption on NO(2)-predosed Au[111] reveals an unexpected attractive coadsorbate interaction, associated with an unprecedented blueshift of the CO stretch frequency, a sizeable attenuation of the infrared NO(2) symmetric stretch band, and a (sq.rt(7) x sq.rt(7))R19 degrees structure characterized by scanning tunneling microscopy and low energy electron diffraction. Density functional calculations allow us to rationalize these observations, and point towards a general pattern of behavior for electronegative coadsorbates on coinage metals, with important implications for catalytic promotion.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.266102DOI Listing

Publication Analysis

Top Keywords

stabilizing no2
4
no2 electronegative
4
electronegative species
4
species promoters
4
promoters coinage
4
coinage metals?
4
metals? adsorption
4
adsorption no2-predosed
4
no2-predosed au[111]
4
au[111] reveals
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Fabrication of TeNT/TeO heterojunction based sensor for ultrasensitive detection of NO.

J Hazard Mater

January 2025

School of Integrated Circuits, Dalian University of Technology, Dalian, Liaoning 116024, China. Electronic address:

Tellurium nanotubes (TeNT) heterojunction with Tellurium oxide (TeO) were prepared by in situ oxidation at elevated temperatures in air. The chemiresistive type NO sensor was then fabricated by depositing the synthesized TeNT/TeO on the integrated gold electrodes. The response of the TeNT/TeO based sensor to 600 ppb NO was 38.

View Article and Find Full Text PDF

Two-dimensional SnSe (X = 1, 2) has emerged as a promising candidate for a NO chemiresistive sensor due to a remarkable affinity to NO gas adsorption. Although their gas sensing mechanism primarily relies on direct charge transfer, the underlying mechanisms of SnSe and SnSe remain unclear, despite various reported successes in phase engineering of SnSe. Here, we investigate phase engineering of SnSe in a hydrothermal route via 1-dodecanethiol (1-DDT), which served as a phase stabilizer, and comprehensively demonstrate phase-dependent NO detection properties.

View Article and Find Full Text PDF

An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material.

View Article and Find Full Text PDF

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!