Consistent lattice Boltzmann method.

Phys Rev Lett

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.

Published: December 2005

Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the bulk viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather than a model of a fluid. A novel lattice Boltzmann model with energy conservation is derived from Boltzmann's kinetic theory. Simulations demonstrate that the new lattice Boltzmann model is the valid approximation of the Boltzmann equation for weakly compressible flows and microflows.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.260605DOI Listing

Publication Analysis

Top Keywords

lattice boltzmann
20
boltzmann method
8
energy conservation
8
boltzmann model
8
boltzmann
6
consistent lattice
4
method lack
4
lack energy
4
lattice
4
conservation lattice
4

Similar Publications

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Fluid flow and amyloid transport and aggregation in the brain interstitial space.

PNAS Nexus

January 2025

Université Paris Cité, CNRS, Laboratoire de Biochimie  Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France.

The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs.

View Article and Find Full Text PDF

Closure equation and higher-order moment relations in the Gauss-Hermite lattice Boltzmann method.

Phys Rev E

November 2024

Graduate Aerospace Laboratories and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.

Moment methods are often used to solve transport problems involving the Boltzmann-BGK equation. Because the moment equations are underdetermined, these methods require an additional "closure equation" that relates higher to lower-order moments. Here, we examine the closure equation and higher-order moment relations implicit in the lattice Boltzmann method (LBM) that use Gauss-Hermite quadrature for their discrete velocity sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!