A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forcing function control of Faraday wave instabilities in viscous shallow fluids. | LitMetric

Forcing function control of Faraday wave instabilities in viscous shallow fluids.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208-3125, USA.

Published: January 2006

We investigate the relationship between the linear surface wave instabilities of a shallow viscous fluid layer and the shape of the periodic, parametric-forcing function (describing the vertical acceleration of the fluid container) that excites them. We find numerically that the envelope of the resonance tongues can only develop multiple minima when the forcing function has more than two local extrema per cycle. With this insight, we construct a multi-frequency forcing function that generates at onset a nontrivial harmonic instability which is distinct from a subharmonic response to any of its frequency components. We measure the corresponding surface patterns experimentally and verify that small changes in the forcing waveform cause a transition, through a bicritical point, from the predicted harmonic short-wavelength pattern to a much larger standard subharmonic pattern. Using a formulation valid in the lubrication regime (thin viscous fluid layer) and a Wentzel-Kramers-Brillouin (WKB) method to find its analytic solutions, we explore the origin of the observed relation between the forcing function shape and the resonance tongue structure. In particular, we show that for square and triangular forcing functions the envelope of these tongues has only one minimum, as in the usual sinusoidal case.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.73.016310DOI Listing

Publication Analysis

Top Keywords

forcing function
16
wave instabilities
8
viscous fluid
8
fluid layer
8
forcing
6
function control
4
control faraday
4
faraday wave
4
instabilities viscous
4
viscous shallow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!