Selective advantage for multicellular replicative strategies: a two-cell example.

Phys Rev E Stat Nonlin Soft Matter Phys

Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel.

Published: January 2006

This paper develops a quasispecies model where cells can adopt a two-cell survival strategy. Within this strategy, pairs of cells join together, at which point one of the cells sacrifices its own replicative ability for the sake of the other cell. We develop a simplified model for the evolutionary dynamics of this process, allowing us to solve for the steady state using standard approaches from quasispecies theory. We find that our model exhibits two distinct regimes of behavior: At low concentrations of limiting resource, the two-cell strategy outcompetes the single-cell survival strategy, while at high concentrations of limiting resource, the single-cell survival strategy dominates. The single-cell survival strategy becomes disadvantageous at low concentrations of limiting resource because the energetic costs of maintaining reproductive and metabolic pathways approach, and may even exceed, the rate of energy production, leaving little excess energy for the purposes of replicating a new cell. However, if the rate of energy production exceeds the energetic costs of maintaining metabolic pathways, then the excess energy, if shared among several cells, can pay for the reproductive costs of a single cell, leaving energy to replicate a new cell. Associated with the two solution regimes of our model is a localization to delocalization transition over the portion of the genome coding for the multicell strategy, analogous to the error catastrophe in standard quasispecies models. The existence of such a transition indicates that multicellularity can emerge because natural selection does not act on specific cells, but rather on replicative strategies. Within this framework, individual cells become the means by which replicative strategies are propagated. Such a framework is therefore consistent with the concept that natural selection does not act on individuals, but rather on populations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.73.010904DOI Listing

Publication Analysis

Top Keywords

survival strategy
16
replicative strategies
12
concentrations limiting
12
limiting resource
12
single-cell survival
12
low concentrations
8
energetic costs
8
costs maintaining
8
metabolic pathways
8
rate energy
8

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.

Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.

View Article and Find Full Text PDF

Nutrition and Hypertension Researches in 2023: focus on salt intake and blood pressure.

Hypertens Res

January 2025

Center for Health Surveillance & Preventive Medicine, Tokyo Medical University Hospital, Tokyo, Japan.

Hypertension is a major global health issue that contributes significantly to cardiovascular morbidity and mortality. The management and prevention of hypertension often involve nutritional and dietary modifications, which are considered effective non-pharmacological strategies. In 2023, the Hypertension Research published several papers highlighting nutrition and hypertension.

View Article and Find Full Text PDF

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

Preventing the progression of cirrhosis to decompensation and death.

Nat Rev Gastroenterol Hepatol

January 2025

Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.

Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!