A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. | LitMetric

AI Article Synopsis

  • The text discusses using special current pulse waveforms to enhance the charge-injection capacity of activated iridium oxide microelectrodes for neural stimulation.
  • These waveforms are biphasic and asymmetric, meaning one phase lasts longer and has lower current compared to the other, which helps minimize electrode polarization.
  • In tests, the technique achieved a maximum charge-injection capacity of 3.3 mC/cm² with cathodal-first pulses and 9.6 mC/cm² with anodal-first pulses, using specific bias voltages and pulse width asymmetries.

Article Abstract

The use of potential biasing and biphasic, asymmetric current pulse waveforms to maximize the charge-injection capacity of activated iridium oxide (AIROF) microelectrodes used for neural stimulation is described. The waveforms retain overall zero net charge for the biphasic pulse, but employ an asymmetry in the current and pulse widths of each phase, with the second phase delivered at a lower current density for a longer period of time than the leading phase. This strategy minimizes polarization of the AIROF by the charge-balancing second phase and permits the use of a more positive anodic bias for cathodal-first pulsing or a more negative cathodic bias for anodal-first pulsing to maximize charge injection. Using 0.4-ms cathodal-first pulses, a maximum charge-injection capacity of 3.3 mC/cm2 was obtained with an 0.6-V bias (versus Ag/AgCl) and a pulse asymmetry of 1:8 in the cathodal and anodal pulse widths. For anodal-first pulsing, a maximum charge capacity of 9.6 mC/cm2 was obtained with an asymmetry of 1:3 at an 0.1-V bias. These measurements were made in vitro in carbonate-buffered saline using microelectrodes with a 2000 microm2 surface area.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2005.862572DOI Listing

Publication Analysis

Top Keywords

activated iridium
8
iridium oxide
8
oxide airof
8
neural stimulation
8
current pulse
8
charge-injection capacity
8
pulse widths
8
second phase
8
anodal-first pulsing
8
capacity mc/cm2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!