Tracking variations in both the latency and amplitude of evoked potential (EP) is important in quantifying properties of the nervous system. Adaptive filtering is a powerful tool for tracking such variations. In this paper, a data-reusing non-linear adaptive filtering method, based on a radial basis function network (RBFN), is implemented to estimate EP. The RBFN consists of an input layer of source nodes, a single hidden layer of non-linear processing units and an output layer of linear weights. It has built-in nonlinear activation functions that allow learning of function mappings. Moreover, it produces satisfactory estimates of signals against a background noise without a priori knowledge of the signal, provided that the signal and noise are independent. In clinical situations where EP responses change rapidly, the convergence rate of the algorithm becomes a critical factor. A carefully designed data-reusing RBFN can accelerate the convergence rate markedly and, thus, enhance its performance. Both theoretical analysis and simulation results support the improved performance of our new algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2005.862540 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
In this study, we investigate the application of support vector machines utilizing a radial basis function kernel for predicting nuclear α-decay half-lives. Our approach integrates a comprehensive set of physics-derived features, including characteristics derived from nuclear structure, to systematically evaluate their impact on predictive accuracy. In addition to traditional parameters such as proton and neutron numbers, as well as terms based on the liquid drop model (e.
View Article and Find Full Text PDFMed Sci (Basel)
December 2024
Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA.
: Environmental exposures, such as heavy metals, can significantly affect physical activity, an important determinant of health. This study explores the effect of physical activity on combined exposure to cadmium, lead, and mercury (metals), using data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Physical activity was measured with ActiGraph GT3X+ devices worn continuously for 7 days, while blood samples were analyzed for metal content using inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India.
Knowledge of soil temperature (ST) is important for analysing environmental conditions and climate change. Moreover, ST is a vital element of soil that impacts crop growth as well as the germination of the seeds. In this study, four machine-learning (ML) paradigms including random forest (RF), radial basis neural network (RBNN), multi-layer perceptron neural network (MLPNN), and co-active neuro-fuzzy inference system (CANFIS) were used for estimation of daily ST at different soil depths (i.
View Article and Find Full Text PDFPrev Vet Med
December 2024
Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow 30-059, Poland. Electronic address:
The purpose of the paper was to apply an Artificial Neural Networks with Radial Basis Function to develop an application model for diagnosing a subclinical ketosis type I and II in dairy cattle. While building the neural network model, applied methodology was compatible to the procedures used in Data Mining processes. The data set was created based on the composition of milk samples of 1520 Polish Holstein-Friesian cows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!