Parathyroid hormone increases beta-catenin levels through Smad3 in mouse osteoblastic cells.

Endocrinology

Division of Endocrinology/Metabolism, Neurology, and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Japan.

Published: May 2006

PTH, via the PTH/PTH-related protein receptor type 1 that couples to both protein kinase A (PKA) and protein kinase C (PKC) pathways, and the canonical Wnt-beta-catenin signaling pathway play important roles in bone formation. In the present study we have examined the interaction between the PTH and Wnt signaling pathways in mouse osteoblastic MC3T3-E1 cells. PTH dose- and time-dependently increased the concentrations of beta-catenin. The PKA activator, forskolin, and the PKC activator, phorbol 12-myristate-13-acetate, as well as the PTH analog, [Nle(8,18),Tyr(34)]human PTH-(3-34)amide, all increased beta-catenin levels. Both H-89, a specific PKA inhibitor, and PKC inhibitors, staurosporine and calphostin C, antagonized PTH stimulation of beta-catenin levels. TGF-beta as well as transfection of the TGF-beta-signaling molecule, Smad3, enhanced beta-catenin levels, and this was antagonized by transfection of a dominant-negative Smad3. The transcriptional activity of transfected dominant-active beta-catenin was enhanced by PTH, an effect that was antagonized by cotransfection of a dominant-negative Smad3. PTH as well as LiCl(2), which mimics the effects of the Wnt-beta-catenin pathway, rescued the dexamethasone- and etoposide-induced apoptosis of osteoblastic cells. In conclusion, the data demonstrate that PTH stimulates osteoblast beta-catenin levels via Smad3, and that both PKA and PKC pathways are involved. The canonical Wnt-beta-catenin pathway is likely to be involved in the antiapoptotic actions of PTH by acting through Smad3 in osteoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2005-1627DOI Listing

Publication Analysis

Top Keywords

beta-catenin levels
20
pth
9
levels smad3
8
mouse osteoblastic
8
osteoblastic cells
8
cells pth
8
protein kinase
8
pkc pathways
8
canonical wnt-beta-catenin
8
dominant-negative smad3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!