AI Article Synopsis

  • The study examines how Rab4, a small GTPase protein, impacts the recycling and activation of beta-adrenergic receptors (beta-AR) in heart cells.
  • Beta1-AR, the main type of beta-AR in HL-1 cardiac myocytes, gets internalized after exposure to isoproterenol (ISO) and is fully recycled back to the surface within 4 hours after ISO is removed.
  • Overexpressing Rab4 in the heart led to an increase in beta-AR on the cell surface, heightened cAMP production, and also caused cardiac hypertrophy, showing Rab4's crucial role in regulating beta-AR function in cardiac muscle.

Article Abstract

We investigate the role of Rab4, a Ras-like small GTPase coordinating protein transport from the endosome to the plasma membrane, on the recycling and activation of endogenous beta-adrenergic receptor (beta-AR) in HL-1 cardiac myocytes in vitro and transgenic mouse hearts in vivo. Beta1-AR, the predominant subtype of beta-AR in HL-1 cardiac myocytes, was internalized after stimulation with isoproterenol (ISO) and fully recycled at 4 h upon ISO removal. Transient expression of Rab4 markedly facilitated recycling of internalized beta-AR to the cell surface and enhanced beta-AR signaling as measured by ISO-stimulated cAMP production. Transgenic overexpression of Rab4 in the mouse myocardium significantly increased the number of beta-AR in the plasma membrane and augmented cAMP production at the basal level and in response to ISO stimulation. Rab4 overexpression induced concentric cardiac hypertrophy with a moderate increase in ventricle/body weight ratio and posterior wall thickness and a selective up-regulation of the beta-myosin heavy chain gene. These data provide the first evidence indicating that Rab4 is a rate-limiting factor for the recycling of endogenous beta-AR and augmentation of Rab4-mediated traffic enhances beta-AR function in cardiac myocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735442PMC
http://dx.doi.org/10.1074/jbc.M511460200DOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
16
recycling activation
8
beta-adrenergic receptor
8
plasma membrane
8
beta-ar hl-1
8
hl-1 cardiac
8
camp production
8
beta-ar
7
rab4
6
cardiac
5

Similar Publications

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Cannabidiol Ameliorates Doxorubicin-Induced Myocardial Injury via Activating Hippo Pathway.

Drug Des Devel Ther

January 2025

School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.

Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.

View Article and Find Full Text PDF

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!