External injection of electron bunches into laser-driven plasma waves so far has not resulted in 'controlled' acceleration, i.e. production of bunches with well-defined energy spread. Recent simulations, however, predict that narrow distributions can be achieved, provided the conditions for properly trapping the injected electrons are met. Under these conditions, injected bunch lengths of one to several plasma wavelengths are acceptable. This paper first describes current efforts to demonstrate this experimentally, using state-of-the-art radio frequency technology. The expected charge accelerated, however, is still low for most applications. In the second part, the paper addresses a number of novel concepts for significant enhancement of photo-injector brightness. Simulations predict that, once these concepts are realized, external injection into a wakefield accelerator will lead to accelerated bunch specs comparable to those of recent 'laser-into-gasjet' experiments, without the present irreproducibility of charge and final energy of the latter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2005.1731 | DOI Listing |
Methods Cell Biol
January 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France. Electronic address:
Currently, Ovarian Cancer (OC) is the most lethal gynecological malignancy. In most patients, it progresses without clinical signs or symptoms, leading to a late diagnosis when it has already spread in the peritoneal cavity as peritoneal carcinomatosis (PC). To date, OC PC management is based on cytoreductive surgery to remove the macroscopic disease, followed by chemotherapy.
View Article and Find Full Text PDFPharmaceutics
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
Pinctada fucata martensii (P. f. martensii) is one of the main pearl oysters cultured in artificial seawater in China.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!