This work focuses on the experimental analysis of the time-course of protein expression in a cell-free system, in conjunction with the development of a computational model, denoted as progressive chain buildup (PCB), able to simulate translation kinetics and product formation as a function of starting reactant concentrations. Translation of the gene encoding the apomyoglobin (apoMb) model protein was monitored in an Escherichia coli cell-free system under different experimental conditions. Experimentally observed protein expression yields, product accumulation time-course and expression completion times match with the predictions by the PCB model. This algorithm regards elementary single-residue elongations as apparent second-order events and it accounts for aminoacyl-tRNA regeneration during translation. We have used this computational approach to model full-length protein expression and to explore the kinetic behavior of incomplete chains generated during protein biosynthesis. Most of the observed incomplete chains are non-obligatory dead-end species, in that their formation is not mandatory for full-length protein expression, and that they are unable to convert to the expected final translation product. These truncated polypeptides do not arise from post-translational degradation of full-length protein, but from a distinct subpopulation of chains which expresses intrinsically more slowly than the population leading to full-length product. The PCB model is a valuable tool to predict full-length and incomplete chain populations and formulate experimentally testable hypotheses on their origin. PCB simulations are applicable to E.coli cell-free expression systems (both in batch and dialysis mode) under the control of T7 RNA polymerase and to other environments where transcription and translation can be regarded as kinetically decoupled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2006.01.012 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!