A comprehensive study of the properties of protonated methane obtained from ab initio molecular dynamics simulations is presented. Comparing computed infrared spectra to the measured one gives further support to the high fluxionality of bare CH(5)(+). The computational trick to partially freezing out large-amplitude motion, in particular hydrogen scrambling and internal rotation of the H(2) moiety, leads to an understanding of the measured IR spectrum despite the underlying rapid hydrogen scrambling motion that interconverts dynamically structures of different symmetry and chemical bonding pattern. In particular, the fact that C-H stretching modes involving the carbon nucleus and those protons that form the H(2) moiety and the CH(3) tripod, respectively, result in distinct peaks is arguably experimental support for three-center two-electron bonding being operative at experimental conditions. It is proposed that hydrogen scrambling is associated with the softening of a mode that involves the bending of the H(2) moiety relative to the CH(3) tripod, which characterizes the C(s) ground-state structure. The potential energy surface that is mapped on to a two dimensional subspace of internal coordinates provides insight into the dynamical mechanism for exchange of hydrogens between CH(3) tripod and the three-center bonded H(2) moiety that eventually leads to full hydrogen scrambling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b513089c | DOI Listing |
Chem Asian J
December 2024
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160 062, India.
Ru(II)-Catalyzed "On Water" direct aryl C(sp)-H amidation of 2-arylbenzo[d]-thiazole/oxazole with acyl azide is reported under silver-free condition. Deuterium scrambling experiments suggested reversible C-H activation catalyzed by active cationic ruthenium species. The organic solvents such as DCE, DMF, DMSO, MeCN, dioxane, and PhMe were not conducive for the C-H amidation except for PhCl in which case, however, inferior yield (31 %) was obtained.
View Article and Find Full Text PDFACS Catal
November 2024
Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria.
A combined surface science/microreactor approach was applied to examine interface effects in ethylene hydrogenation on carbon-supported Ag, Au, and Cu nanoparticle catalysts. Turnover frequencies (TOFs) were substantially higher for supported catalysts than for (unsupported) polycrystalline metal foils, especially for Ag. Spark ablation of the corresponding metals on highly oriented pyrolytic graphite (HOPG) and carbon-coated grids yielded nanoparticles of around 3 nm size that were well-suited for characterization by X-ray photoelectron spectroscopy (XPS), high-resolution (scanning) transmission electron microscopy (HRTEM/STEM), and energy dispersive X-ray spectroscopy (EDX).
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China.
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear.
View Article and Find Full Text PDFBeilstein J Org Chem
September 2024
Department of Chemistry, Texas A&M University, College Station TX, 77843, USA.
Iminoiodinanes comprise a class of hypervalent iodine reagents that is often encountered in nitrogen-group transfer (NGT) catalysis. In general, transition metal catalysts are required to effect efficient NGT to unactivated olefins because iminoiodinanes are insufficiently electrophilic to engage in direct aziridination chemistry. Here, we demonstrate that 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) activates -arylsulfonamide-derived iminoiodinanes for the metal-free aziridination of unactivated olefins.
View Article and Find Full Text PDFCommun Biol
August 2024
Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, HO, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!