Pulse electron-electron double resonance (PELDOR) has been employed to measure the distance between the putative tyrosyl radicals in the two halves of the R2 subunit from mouse ribonucleotide reductase. The results provide experimental evidence that the active, tyrosyl radical containing mouse R2 subunit forms a homodimeric form in solution. The distance between the two tyrosyl radicals present in the dimer was determined to be 3.25 +/- 0.05 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b513950cDOI Listing

Publication Analysis

Top Keywords

tyrosyl radicals
12
mouse ribonucleotide
8
ribonucleotide reductase
8
peldor study
4
tyrosyl
4
study tyrosyl
4
radicals protein
4
protein mouse
4
reductase pulse
4
pulse electron-electron
4

Similar Publications

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Selective labeling of tyrosine residues in proteins: insights from PTAD labeling and tandem mass spectrometry analysis.

Mol Omics

December 2024

Department of Chemistry and Biochemistry, University of Texas at Arlington, Box 19065, 700 Planetarium Place, Room 130, Arlington, TX 76019, USA.

Designing reagents for protein labeling is crucial for investigating cellular events and developing new therapeutics. Historically, much effort has been focused on labeling lysine and arginine residues due to their abundance on the protein periphery. The chemo-selectivity of these reagents is a challenging yet crucial parameter for deciphering properties specifically associated with the targeted amino acid.

View Article and Find Full Text PDF

In this work, we investigated the H2O2-induced oligomerization of wild-type human neuroglobin (hNgb) and of some selected variants (C46AC55A, Y44A, Y44F, Y44AC46AC55A, Y44AC46AC55A) to clarify how the process is affected by the Cys46/Cys55 disulfide bond and the distal H-bonding network and to figure out the molecular determinants of the H2O2-induced formation of amyloid type structures and hNgb aggregates. It turns out that hydrogen peroxide exerts a twofold effect on hNgb, inducing both heme breakdown and protein dimerization/polymerization. The enhanced resistance to the oxidizing effect of H2O2 of the disulfide free variants indicates that both effects are strictly influenced by the heme accessibility for H2O2.

View Article and Find Full Text PDF

Structure-function mapping and mechanistic insights on the SARS CoV2 Nsp1.

Protein Sci

December 2024

ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.

Non-structural protein 1 (Nsp1) is a key component of the infectious process caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for the COVID-19 pandemic. Our previous data demonstrated that Nsp1 can degrade both RNA and DNA in the absence of the ribosome, a process dependent on the metal ions Mn, Ca, or Mg (Salgueiro et al., SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease.

View Article and Find Full Text PDF

The alternative oxidase (AOX) is a membrane-bound di-iron enzyme that catalyzes O-driven quinol oxidation in the respiratory chains of plants, fungi, and several pathogenic protists of biomedical and industrial interest. Yet, despite significant biochemical and structural efforts over the last decades, the catalytic principles of AOX remain poorly understood. We develop here multi-scale quantum and classical molecular simulations in combination with biochemical experiments to address the proton-coupled electron transfer (PCET) reactions responsible for catalysis in AOX from , the causative agent of sleeping sickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!