Objective: The objective of this study was to examine the feasibility of a multimodal system to effectively induce and maintain contrast enhancement in both computed tomography (CT) and magnetic resonance (MR) for radiation therapy applications.

Materials And Methods: The physicochemical characteristics of a liposome-encapsulated iohexol and gadoteridol formulation were assessed in terms of agent loading efficiencies, size and morphology, in vitro stability, and release kinetics. The imaging properties of the liposome formulation were assessed based on T1 and T2 relaxivity measurements and in vitro CT and MR imaging in a phantom. A preliminary imaging-based evaluation of the in vivo stability of this multimodal contrast agent was also performed in a lupine model.

Results: The average agent loading levels achieved were 26.5+/-3.8 mg/mL for iodine and 6.6+/- 1.5 mg/mL for gadolinium. These concentrations correspond to approximately 10% of that found in the commercially available preparations of each of these agents. However, this liposome-based formulation is expected to have a smaller volume of distribution and prolonged circulation lifetime in vivo. This multimodal system was found to have high agent retention in vitro, which translated into maintained contrast enhancement (up to 3 days) and stability in vivo.

Conclusions: This study demonstrated the feasibility of engineering a multimodal contrast agent with prolonged contrast enhancement in vivo for use in CT and MR. This contrast agent may serve as a valuable tool for cardiovascular imaging as well as image registration and guidance applications in radiation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.rli.0000186568.50265.64DOI Listing

Publication Analysis

Top Keywords

contrast agent
16
multimodal contrast
12
contrast enhancement
12
computed tomography
8
tomography magnetic
8
magnetic resonance
8
multimodal system
8
radiation therapy
8
formulation assessed
8
agent loading
8

Similar Publications

Objective: To evaluate the added value of dynamic contrast-enhanced ultrasound (DCE-US) analysis in pre-operative differential diagnosis of small (≤20 mm) solid pancreatic lesions (SPLs).

Methods: In this retrospective study, patients with biopsy or surgerical resection and histopathologically confirmed small (≤20 mm) SPLs were included. One wk before biopsy/surgery, pre-operative B-mode ultrasound and contrast-enhanced ultrasound were performed.

View Article and Find Full Text PDF

Mathematical modeling of impacts of patient differences on renin-angiotensin system and applications to COVID-19 lung fibrosis outcomes.

Comput Biol Med

January 2025

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14215, USA. Electronic address:

Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS peptide homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!