Migrating and myelinating potential of subventricular zone neural progenitor cells in white matter tracts of the adult rodent brain.

Mol Cell Neurosci

UMR 6216, Institut de Biologie du Développement de Marseille Luminy, Case 907, 13288 Marseille Cedex 9, France.

Published: April 2006

Adult neural stem cells in the subventricular zone (SVZ) produce neuronal progenitors that migrate along the rostral migratory stream (RMS) and generate olfactory interneurons. Here, we evaluate the migratory potential of SVZ cells outside the RMS and their capacity to generate oligodendrocytes in the adult brain. We show that SVZ cells migrate long distances when grafted into white matter tracts such as the cingulum (Ci) and corpus callosum (CC). Furthermore, 22 days postinjection, most present morphologic and phenotypic characteristics of cells committed to the oligodendrocyte lineage. Cells grafted in shiverer CC and Ci become MBP-positive oligodendrocytes, abundantly myelinating these white matter tracts. Type A progenitors are involved in this myelinating process. Altogether, this study reveals the migrating and myelinating potential of SVZ cells in a new environmental context. Therefore, SVZ cells stand as interesting candidates for the development of novel therapeutic strategies for demyelinating diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2006.01.004DOI Listing

Publication Analysis

Top Keywords

svz cells
16
white matter
12
matter tracts
12
migrating myelinating
8
myelinating potential
8
subventricular zone
8
cells
8
potential svz
8
svz
5
potential subventricular
4

Similar Publications

bFGF-Chitosan "brain glue" promotes functional recovery after cortical ischemic stroke.

Bioact Mater

April 2025

Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.

The mammalian brain has an extremely limited ability to regenerate lost neurons and to recover function following ischemic stroke. A biomaterial strategy of slowly-releasing various regeneration-promoting factors to activate endogenous neurogenesis represents a safe and practical neuronal replacement therapy. In this study, basic fibroblast growth factor (bFGF)-Chitosan gel is injected into the stroke cavity.

View Article and Find Full Text PDF

In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.

View Article and Find Full Text PDF

Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis.

Cell Rep

January 2025

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.

View Article and Find Full Text PDF

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with limited effective treatment strategies. Endogenous neural stem cells (NSCs) give rise to neurons and glial cells throughout life. However, NSCs are more likely to differentiate into glial cells rather than neurons at the lesion site after TBI and the underlying molecular mechanism remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!