Detection and monitoring of virus infections by real-time PCR.

Mol Aspects Med

Children's Cancer Research Institute, St. Anna Kinderspital, A-1090 Vienna, Austria.

Published: August 2006

The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112306PMC
http://dx.doi.org/10.1016/j.mam.2005.12.001DOI Listing

Publication Analysis

Top Keywords

quantitative pcr
12
pcr
8
real-time pcr
8
virus
6
detection monitoring
4
monitoring virus
4
virus infections
4
infections real-time
4
pcr employment
4
employment polymerase
4

Similar Publications

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Introduction: Breast cancer is one of the most common cancers in women and poses a serious threat to women's health. Circular RNAs (circRNAs) have been found to be specifically expressed in cancers and regulate the growth and death of tumor cells. The role of circRNAs in breast cancer remain unknown.

View Article and Find Full Text PDF

Mouse models are vital tools for discerning the relative contributions of host and microbial genetics to disease, often requiring the transplantation of microbiota between different mouse strains. Transfer methods include antibiotic treatment of recipients and colonization using either co-housing with donors or the transplantation of fecal or cecal donor material. However, the efficiency and dynamics of these methods in reconstituting recipients with donor microbes is not well understood.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.

Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!