Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses.

Epilepsy Res

Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States.

Published: April 2006

Neurogenesis in the subgranular zone of the dentate gyrus persists throughout the lifespan of mammals, and the resulting newly born neurons are incorporated into existing hippocampal circuitry. Seizures increase the rate of neurogenesis in the adult rodent brain and result in granule cells in the dentate gyrus with basal dendrites. Using doublecortin (DCX) immunocytochemistry to label newly generated neurons the current study focuses on the electron microscopic features of DCX-labeled cell bodies and dendritic processes in the dentate gyrus of rats with pilocarpine-induced epilepsy. At the base of the granule cell layer clusters of cells that include up to six DCX-labeled cell bodies were observed. The cell bodies in these clusters lacked a one-to-one association with an astrocyte cell body and its processes, a relationship that is typical for newly born granule cells in control rats. Also, DCX-labeled basal dendrites in the hilus had immature synapses while those in control rats lacked synapses. These results indicate that increased neurogenesis after seizures alters the one-to-one relationship between astrocytes and DCX-labeled newly generated neurons at the base of the granule cell layer. The data also suggest that the synapses on DCX-labeled hilar basal dendrites contribute to the persistence of hilar basal dendrites on neurons born after pilocarpine-induced seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2005.12.003DOI Listing

Publication Analysis

Top Keywords

basal dendrites
20
newly born
12
hilar basal
12
dentate gyrus
12
cell bodies
12
pilocarpine-induced epilepsy
8
immature synapses
8
granule cells
8
newly generated
8
generated neurons
8

Similar Publications

Identification of an immunological signature of long COVID syndrome.

Front Immunol

January 2025

Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy.

Introduction: Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered.

View Article and Find Full Text PDF

Long-range inputome of prefrontal GABAergic interneurons in the Alzheimer's disease mouse.

Alzheimers Dement

January 2025

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.

Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Of mice and men: Dendritic architecture differentiates human from mice neuronal networks.

bioRxiv

December 2024

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.

The organizational principles that distinguish the human brain from other species have been a long-standing enigma in neuroscience. Focusing on the uniquely evolved human cortical layers 2 and 3, we computationally reconstruct the cortical architecture for mice and humans. We show that human pyramidal cells form highly complex networks, demonstrated by the increased number and simplex dimension compared to mice.

View Article and Find Full Text PDF

Purpose: Osteogenesis imperfecta (OI) is a rare hereditary disorder of the connective tissue. Despite recent attention to corneal abnormalities in OI, understanding remains limited. This study aimed to comprehensively evaluate corneal changes in a large sample of OI patients compared to controls using in vivo confocal microscopy (IVCM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!