Objective: To investigate the influence of polysaccharide from Aloe Vera (AP) on the proliferation of the human epithelial cells cultured in vitro.

Methods: The human epithelial cells undergoing 3 to 4 passages of confluence culture were randomly divided into control and 25, 50, 100, 200 and 400 mg/L AP groups according to different dosage of the polysaccharide (AP) added into the culture medium. In the control group (C), equal volume of DK-SFM medium was added to the culturing cells. The conjugation time of epithelial cells, the changes in the cell morphology and ultrastructure were observed under inverted phase contrast microscope and transmission electron microscope, respectively. The cell proliferation was measured by MTT, cell count analysis and [(3)H]-TdR incorporation. Flow cytometry analysis was employed to detect the cell cycle. The leakage rate of lactate dehydrogenase (LDH) was assayed for the evaluation of the epithelial cell injury.

Results: There was no significant difference in the morphology of the epithelial cells among the groups under inverted phase contrast microscope. But under the transmission electron microscope (TEM), the cells in 100 to 400 mg/L AP groups were seen to have proliferated actively, with euchromatin dominant in the nuclei, while heterochromatin was dominant in the cellular nucleus in control and 25 mg/L AP groups. The confluence time of epithelial cells in 50, 100, 200, 400 mg/L AP groups (154 +/- 12, 141 +/- 20, 130 +/- 19, 124 +/- 13) h preceded noticeably than that in control group (182 +/- 8) h, (P < 0.01). The cell proliferation in 100, 200, 400 mg/L groups reached the peak on the 5th day after AP treatment, while that in control and other groups was delayed by 1 to 2 days. The survival rate of the cells in 25 to 400 mg/L AP groups increased dramatically compared with that in control group, with its [(3)H]-TdR incorporation levels significantly increased in a dose dependent manner. The leakage rate of LDH in 200 and 400 mg/L AP groups was lower than that in control group (P < 0.01). The flow cytometric analysis of the cell cycle distribution revealed that the percentage of cell cycle from phase G0/G1 to G2/M and S in 25 to 400 mg/L AP groups increased significantly in a dose dependent manner compared with that in control group (P < 0.01).

Conclusion: AP might be beneficial to the protection of epithelial cells by promoting cell proliferation through inducing the progression of epidermal cells from phase G0/G1 into G2/M and S phases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mg/l groups
32
epithelial cells
28
400 mg/l
28
control group
20
200 400
16
human epithelial
12
100 200
12
cell proliferation
12
cell cycle
12
cells
11

Similar Publications

The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.

View Article and Find Full Text PDF

Objective: The current study was designed with the aim of conducting a systematic review and meta-analysis to determine the circulating levels of visfatin in patients with chronic obstructive pulmonary disease (COPD) compared to healthy individuals.

Methods: Until March 2024, we searched the Web of Science, PubMed/Medline, and Scopus databases. The analysis included case-control studies assessing the association between circulating visfatin and COPD.

View Article and Find Full Text PDF

Genome-wide DNA methylation analysis of sorghum leaves following foreign GA3 exposure under salt stress.

Genomics

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Sorghum is an increasingly popular topic of research in elucidating survival and adaptation approaches to augmented salinity. Nonetheless, little is known about the outcome and modulatory networks involved in the gibberellic acid (GA3)-induced salt stress alleviation in sorghum. Here, we identified 50 mg/L GA3 as the optimal concentration for sorghum ('Jitian 3') development under salt stress.

View Article and Find Full Text PDF

Microfibrillated cellulose (MFC), a sustainable material derived from biomass, stands out as an environmentally friendly alternative for developing chemical sensors owing to its advantageous properties, including high porosity, surface area, and available surface functional groups. Herein, we propose a simple and low-cost strategy for developing cellulose-based strips for the colorimetric detection of total iron in water. The strips were prepared by functionalizing MFC casting membranes with 1-(2-Thiazolylazo)-2-naphthol (TAN), which was then characterized by structural and morphological techniques.

View Article and Find Full Text PDF

Perfluorononanoic acid (PFNA), widely employed in surfactants, coatings, plastics, corrosion inhibitors, and fire-extinguishing agents, is less regulated than PFOS or PFOA but displays higher bioaccumulation and potential toxicity. Most toxicity assessments have focused on mammals, fish, and algae, with limited research on ground-dwelling arthropods, especially ants. Here, we examined PFNA's toxic effects on red imported fire ants (RIFAs), a prevalent ground-dwelling species in South China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!