High density lipoprotein modulates platelet function.

Cytometry A

Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.

Published: March 2006

Background: Platelet activation by atherogenic lipoproteins can be antagonized by high density lipoprotein (HDL), probably via interaction with the ATP-binding cassette transporter A1 (ABCA1).

Methods: ABCA1 expression and its association with cholesterol rich membrane domains was analyzed by mRNA and Western blot analysis. HDL effects on platelet receptor clustering were analyzed by flow cytometric analysis of fluorescence resonance energy transfer between fluorochrome-labeled antibodies.

Results: ABCA1 expression increased upon megakaryocytic differentiation of human stem cells and ABCA1 protein partially associated to LubroIWX-resistant membrane domains. Plasma HDL-cholesterol in healthy donors negatively correlated to the platelet membrane cholesterol content. Receptor cluster analysis revealed a decrease in the association of Gplb and FcgammaRII upon incubation of platelets with HDL3.

Conclusion: Our results suggest that HDL modulates platelet reactivity by altering lipid raft associated receptor clustering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20214DOI Listing

Publication Analysis

Top Keywords

high density
8
density lipoprotein
8
modulates platelet
8
abca1 expression
8
membrane domains
8
receptor clustering
8
platelet
5
lipoprotein modulates
4
platelet function
4
function background
4

Similar Publications

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Background: Stroke has emerged as an escalating public health challenge among middle-aged and older individuals in China, closely linked to glycolipid metabolic abnormalities. The Hemoglobin A1c/High-Density Lipoprotein Cholesterol (HbA1c/HDL-C) ratio, an integrated marker of glycolipid homeostasis, may serve as a novel predictor of stroke risk.

Methods: Our investigation utilized data from the China Health and Retirement Longitudinal Study cohort (2011-2018).

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

The main obstacle to large scale quantum computing are the errors present in every physical qubit realization. Correcting these errors requires a large number of additional qubits. Two main avenues to reduce this overhead are (i) low-density parity check (LDPC) codes requiring very few additional qubits to correct errors (ii) cat qubits where bit-flip errors are exponentially suppressed by design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!