Dissimilatory nitrate reductase from Bradyrhizobium sp. (Lupinus): subcellular location, catalytic properties, and characterization of the active enzyme forms.

Curr Microbiol

Department of Plant Physiology, Faculty of Biology, A. Mickiewicz University, Al. Niepodległości 14, 61-713, Poznań, Poland.

Published: March 2006

Subcellular location, chlorate specificity, and sensitivity to micromolar concentrations of azide suggest that most of the anaerobically induced nitrate reductase (NR) activity in Bradyrhizobium sp. (Lupinus) could be ascribed to the membrane type of bacterial dissimilatory NRs. Two active complexes of the enzyme, NR(I) of 140 kDa and NR(II) of 190 kDa, were detected in membranes of the nitrate-respiring USDA strain 3045. Both enzyme forms were purified to homogeneity. Obtained specific antibodies showed that these native species were immunologically closely related and composed of largely similar 126-kDa, 65-kDa, and 25-kDa subunits. The finding that NR(I) and NR(II) share common epitopes suggests that they may not be different species, but rather two forms of the same enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-005-0265-xDOI Listing

Publication Analysis

Top Keywords

nitrate reductase
8
bradyrhizobium lupinus
8
subcellular location
8
enzyme forms
8
dissimilatory nitrate
4
reductase bradyrhizobium
4
lupinus subcellular
4
location catalytic
4
catalytic properties
4
properties characterization
4

Similar Publications

Nitric oxide release as a defense mechanism in marine microalgae against microplastic-induced stress.

Environ Pollut

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp.

View Article and Find Full Text PDF

Residual Nitrite, Nitrate, and Volatile N-Nitrosamines in Organic and Conventional Ham and Salami Products.

Foods

January 2025

Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.

View Article and Find Full Text PDF

Phycospheric Bacteria Alleviate the Stress of Erythromycin on by Regulating Nitrogen Metabolism.

Plants (Basel)

January 2025

Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.

Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of ; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.

View Article and Find Full Text PDF

Effects of pristine and photoaged tire wear particles and their leachable additives on key nitrogen removal processes and nitrous oxide accumulation in estuarine sediments.

J Hazard Mater

January 2025

School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China. Electronic address:

Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (NO) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.

View Article and Find Full Text PDF

Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!