The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430264PMC
http://dx.doi.org/10.1128/MCB.26.5.1850-1864.2006DOI Listing

Publication Analysis

Top Keywords

mammalian rad9
16
rad9 plays
8
plays role
8
telomere stability
8
g2-phase-specific cell
8
cell survival
8
homologous recombinational
8
recombinational repair
8
cell cycle
8
mammalian
5

Similar Publications

Minute virus of mice NS1 redirects casein kinase 2 specificity to suppress the ATR DNA damage response pathway during infection.

J Virol

December 2024

Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA.

Unlabelled: During infection the autonomous parvovirus minute virus of mice (MVM) generates extensive DNA damage which facilitates virus replication and induces a cellular DNA damage response (DDR) driven by the ataxia telangiectasia mutated (ATM) kinase. Atypically, the ataxia telangiectasia and Rad-3-related (ATR) DDR pathway remains inactive. Upon DNA damage ATR is normally recruited to single-stranded DNA sequences formed at genomic DNA damage sites, and while within a multiprotein complex activates, via phosphorylation, the key DDR regulator checkpoint kinase 1 (Chk1).

View Article and Find Full Text PDF

The DNA replication stress (DRS) response is a crucial homeostatic mechanism for maintaining genome integrity in the face of intrinsic and extrinsic barriers to DNA replication. Importantly, DRS is often significantly increased in tumor cells, making tumors dependent on the cellular DRS response for growth and survival. Rad9-Hus1-Rad1 Interacting Nuclear Orphan 1 (RHNO1), a protein involved in the DRS response, has recently emerged as a potential therapeutic target in cancer.

View Article and Find Full Text PDF

DNA lesions trigger DNA damage checkpoint (DDC) signaling which arrests cell cycle progression and promotes DNA damage repair. In , phosphorylation of histone H2A (γH2A, equivalent to γH2AX in mammals) is an early chromatin mark induced by DNA damage that is recognized by a group of DDC and DNA repair factors. We find that γH2A negatively regulates the G2/M checkpoint in response to the genotoxin camptothecin, which is a DNA topoisomerase I poison.

View Article and Find Full Text PDF

Eukaryotic DNA clamp is a trimeric protein featuring a toroidal ring structure that binds DNA on the inside of the ring and multiple proteins involved in DNA transactions on the outside. Eukaryotes have two types of DNA clamps: the replication clamp PCNA and the checkpoint clamp RAD9-RAD1-HUS1 (9-1-1). 9-1-1 activates the ATR-CHK1 pathway in DNA damage checkpoint, regulating cell cycle progression.

View Article and Find Full Text PDF

Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.

Nucleic Acids Res

December 2023

Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA.

The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!