Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.

J Am Chem Soc

Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany.

Published: February 2006

An understanding of low-frequency, collective protein dynamics at low temperatures can furnish valuable information on functional protein energy landscapes, on the origins of the protein glass transition and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a broad peak in the dynamic structure factor centered at about approximately 2-2.5 meV, originates from approximately 10(2) collective, harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical nature of protein-protein interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja055962qDOI Listing

Publication Analysis

Top Keywords

boson peak
12
protein dynamics
8
interprotein vibrations
8
furnish valuable
8
protein-protein interactions
8
dynamic structure
8
structure factor
8
harmonic vibrations
8
vibrations
5
low-temperature protein
4

Similar Publications

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

Amber is a fragile (in Angell's classification) natural glass that has performed maturation processes over geological time. The terahertz dynamics of Baltic amber that was about 40 million years old were studied by terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.2 and 6.

View Article and Find Full Text PDF
Article Synopsis
  • Physical vapor deposition creates organic glasses with high kinetic stability, which can slowly transition to supercooled liquids when heated.
  • The study investigates the rejuvenation of vapor-deposited methyl-m-toluate glasses after 6 hours of annealing at a temperature close to their glass transition temperature (Tg), finding moderate glasses show rejuvenation, while highly stable glasses do not show expected changes.
  • Surprisingly, annealing lead to increased storage component of dielectric susceptibility in stable glasses without increases in the loss component, indicating short-term rejuvenation affects high-frequency relaxation processes; simulations showed no rejuvenation in similarly stable glasses within the same time frame.
View Article and Find Full Text PDF

Boson peaks are observed in glassy materials due to atom, spin, and strain disordered states that provide additional vibration modes at low temperatures. However, Boson peaks have not been observed in pure dipole disordered systems without structural disorder. Here, we report the observation of a Boson-peak-like hump in specific heat near 7 K in organic-inorganic hybrid crystal MA_{4}InCl_{7}(MA=CH_{3}NH_{3}).

View Article and Find Full Text PDF

We show that the existence of clouds of ultralight particles surrounding black holes during their cosmological history as members of a binary system can leave a measurable imprint on the distribution of masses and orbital eccentricities observable with future gravitational-wave detectors. Notably, we find that for nonprecessing binaries with chirp masses M≲10M_{⊙}, formed exclusively in isolation, larger-than-expected values of the eccentricity, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!