To potentially cure neurodegenerative diseases, we need to understand on a molecular level what triggers the complex folding mechanisms and shifts the equilibrium from functional to pathological isoforms of proteins. The development of small peptide models that can serve as tools for such studies is of paramount importance. We describe the de novo design and characterization of an alpha-helical coiled coil based model peptide that contains structural elements of both alpha-helical folding and beta-sheet formation. Three distinct secondary structures can be induced at will by adjustment of pH or concentration. Low concentrations at pH 4.0 yield globular particles of the unfolded peptide, while at the same pH, but at higher concentration, defined beta-sheet ribbons are formed. In contrast, at high concentrations and pH 7.4, the peptide forms highly ordered alpha-helical fibers. Thus, this system allows one to systematically study now the consequences of the interplay between peptide and protein primary structure and environmental factors for peptide and protein folding on a molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja057450hDOI Listing

Publication Analysis

Top Keywords

beta-sheet ribbons
8
alpha-helical fibers
8
secondary structures
8
molecular level
8
peptide protein
8
peptide
7
random coils
4
coils beta-sheet
4
alpha-helical
4
ribbons alpha-helical
4

Similar Publications

Article Synopsis
  • Ferroelectric materials can switch their polarization with electric fields and are useful for applications in information storage, energy management, low-power electronics, and biomedical devices.
  • Soft ferroelectrics, particularly those based on poly(vinylidene fluoride) (PVDF), often have high coercive fields and complex structures, which limit their effectiveness.
  • A new type of ferroelectric material, created from water-soluble molecules and a peptide, shows improved characteristics like a much lower coercive field and a higher Curie temperature, making it a promising candidate for sustainable, advanced ferroelectric applications.
View Article and Find Full Text PDF

Controlling lamination and directional growth of β-sheets via hydrophobic interactions: The strategies and insights.

J Colloid Interface Sci

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China. Electronic address:

The self-assembling morphologies of proteins, nucleic acids, and peptides are well correlated with their functioning in biological systems. In spite of extensive studies for the morphologies regulating, the directional control of the assembly morphology structure for the peptides still remains challenging. Here, the directional structure control of a bola-like peptide Ac-KIIF-CONH (KIIF) was realized by introducing different amount of acetonitrile to the system.

View Article and Find Full Text PDF

Resolving the Nanoscale Structure of β-Sheet Peptide Self-Assemblies Using Single-Molecule Orientation-Localization Microscopy.

ACS Nano

March 2024

Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Synthetic peptides that self-assemble into cross-β fibrils are versatile building blocks for engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarities to amyloid species have been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize by using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize Nile red (NR), an amyloidophilic fluorogenic probe, and single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers KFE8 and KFE8 and the pathological amyloid-beta peptide Aβ42.

View Article and Find Full Text PDF

Structure of Amyloid Peptide Ribbons Characterized by Electron Microscopy, Atomic Force Microscopy, and Solid-State Nuclear Magnetic Resonance.

J Phys Chem B

February 2024

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.

Polypeptides often self-assemble to form amyloid fibrils, which contain cross-β structural motifs and are typically 5-15 nm in width and micrometers in length. In many cases, short segments of longer amyloid-forming protein or peptide sequences also form cross-β assemblies but with distinctive ribbon-like morphologies that are characterized by a well-defined thickness (on the order of 5 nm) in one lateral dimension and a variable width (typically 10-100 nm) in the other. Here, we use a novel combination of data from solid-state nuclear magnetic resonance (ssNMR), dark-field transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryogenic electron microscopy (cryoEM) to investigate the structures within amyloid ribbons formed by residues 14-23 and residues 11-25 of the Alzheimer's disease-associated amyloid-β peptide (Aβ and Aβ).

View Article and Find Full Text PDF

The microtubule-associated protein tau aggregates into neurofibrillary tangles in Alzheimer's disease (AD). The main type of aggregates, the paired helical filaments (PHF), incorporate about 20% of the full-length protein into the rigid core. Recently, cryo-electron microscopy data showed that a protease-resistant fragment of tau (residues 297-391) self-assembles in vitro in the presence of divalent cations to form twisted filaments whose molecular structure resembles that of AD PHF tau [S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!