Packed-column supercritical fluid chromatography (pSFC) coupled to an atmospheric pressure chemical ionization (APCI) source and a tandem mass spectrometer (MS/MS) with minimum sample pretreatment was explored for the rapid and enantioselective determination of (R,S)-propranolol in mouse blood. Serial bleeding of mice is advantageous for the reduction of animal usage, dosing errors, and animal-to-animal variation. The effects of the eluent flow rate and composition as well as the nebulizer temperatures on the ionization efficiency of racemic propranolol and pindolol as model compounds in the positive ion mode under pSFC conditions were studied. The fundamental parameters on the proposed hyphenated system such as matrix ionization suppression and chromatographic performances were investigated in improving sensitivity and enantiomeric separation for the detection of the analytes. The proposed chiral pSFC-APCI/MS/MS approach requiring approximately 3 min/sample for the determination of (R,S)-propranolol at a low nanogram per milliliter region was partially validated with respect to specificity, linearity, reproducibility, and accuracy and was applied to support a pharmacokinetic study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0516178DOI Listing

Publication Analysis

Top Keywords

supercritical fluid
8
enantioselective determination
8
propranolol pindolol
8
mouse blood
8
blood serial
8
determination rs-propranolol
8
fluid chromatography-tandem
4
chromatography-tandem mass
4
mass spectrometry
4
spectrometry enantioselective
4

Similar Publications

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Comparative Analysis of Chemical Composition and Antibacterial Activity of Essential Oils from Five Varieties of Extracted via Supercritical Fluid Extraction.

Molecules

January 2025

Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.

This study aimed to determine the chemical composition of five essential oils (LEOs) using the gas chromatography-mass spectroscopy technique and to assess their antibacterial activity against four marine species, including , , , and . Sensitivity tests were performed using the disk diffusion and serial dilution methods. The results showed that all five LEOs exhibited antibacterial activity against the four tested marine species.

View Article and Find Full Text PDF

Ensuring long-term wellbore integrity is critical for carbon dioxide geological storage. Ordinary Portland cement (PC) is usually used for wellbore primary cementing and plug operation, and set cement is easily corroded by acidic fluids, such as carbon dioxide, in underground high-temperature and high-pressure (HTHP) environments, resulting in a decrease in the mechanical properties and an increase in permeability. In order to achieve long-term wellbore integrity in a CO-rich environment This study introduces materials such as thermosetting vinyl ester resin (TSR), filler composite resin (FCR), and low-cost resin cement (RC).

View Article and Find Full Text PDF

Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach.

View Article and Find Full Text PDF

Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients.

Foods

January 2025

National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Background: Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!