Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment.

Water Sci Technol

Department of Sanitary and Environmental Engineering, Hamburg University of Technology, Eissendorfer Strasse 42, 21073 Hamburg, Germany.

Published: May 2006

An innovative technology for the biological treatment of wastewater in regions with sufficient solar radiation based on the simultaneous growth and degradation processes of algal and bacterial biomass is presented. The aim of the work is the improvement of pond technology through the formation of stable algae-bacteria aggregates, which a) permit a simple separation of the algal biomass by gravity sedimentation, b) enable a high removal efficiency for organic carbon and nutrients, and c) are independent in terms of oxygen provision through algal photosynthesis. Algae-bacteria aggregates could be developed with a suitable algal species (Chlorella vulgaris, Strain Hamburg) as a 'model organism' in a wastewater environment. The morphology of algal-bacterial flocs is similar to activated sludge flocs. They are stable and settle quickly. Floc size ranged between 400 and 800 microm. Results of our experiments with an artificially irradiated lab-scale system, operated in continuous flow mode, revealed that even at a relatively short hydraulic detention time of two days, a high elimination capacity of 9.96 g N m(-2) d(-1) and 0.87g Pm(-2) d(-1) can be achieved. Recent investigations confirmed that floc formation of unicellular algae and wastewater bacteria also could be developed and maintained in a pilot-scale system with a water depth of 0.5 m.

Download full-text PDF

Source

Publication Analysis

Top Keywords

algae-bacteria aggregates
8
bioflocculent algal-bacterial
4
algal-bacterial biomass
4
biomass improves
4
improves low-cost
4
wastewater
4
low-cost wastewater
4
wastewater treatment
4
treatment innovative
4
innovative technology
4

Similar Publications

When microplastics meet microalgae: Unveiling the dynamic formation of aggregates and their impact on toxicity and environmental health.

Water Res

December 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm).

View Article and Find Full Text PDF

Surface-programmed microbiome assembly in phycosphere to microplastics contamination.

Water Res

September 2024

Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China. Electronic address:

Recalcitrance in microplastics accounts for ubiquitous white pollution. Of special interest are the capabilities of microorganisms to accelerate their degradation sustainably. Compared to the well-studied pure cultures in degrading natural polymers, the algal-bacterial symbiotic system is considered as a promising candidate for microplastics removal, cascading bottom-up impacts on ecosystem-scale processes.

View Article and Find Full Text PDF

Microplastics, plastic particles less than 5 mm in length, are a ubiquitous pollutant in the environment, but research on freshwater microplastic contamination is lacking. A possible fate of microplastics in freshwater environments is to become entangled or aggregated in biofilms, which are matrices of algae, bacteria, and micro invertebrates that grow on underwater surfaces, following a progression of settling algae, periphyton, and finally invertebrate colonization. This study at the Oasis Marina at National Harbor in Oxon Hill, Maryland, examined how the taxonomic assemblages of freshwater biofilms in the Potomac River are associated with the number of microplastics aggregated within them.

View Article and Find Full Text PDF

In algae-bacteria symbiotic wastewater treatment, the excellent settling performance of algae-bacteria aggregates is critical for biomass separation and recovery. Here, the composition of extracellular polymeric substances (EPS), microbial profiles, and functional genes of algae-bacteria aggregates were investigated at different solid retention times (SRTs) (10, 20, and 40 d) during partial nitrification in photo sequencing bioreactors (PSBRs). Results showed that SRTs greatly influenced the nitrogen transformation and the formation and morphological structure of algae-bacteria aggregates.

View Article and Find Full Text PDF

Periphytic biofilms-mediated microbial interactions and their impact on the nitrogen cycle in rice paddies.

Eco Environ Health

September 2022

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

Rice paddies are unique waterlogged wetlands artificially constructed for agricultural production. Periphytic biofilms (PBs) at the soil-water interface play an important role in rice paddies characterized by high nutrient input but low utilization efficiency. PBs are composed of microbial aggregates, including a wide variety of microorganisms (algae, bacteria, fungi, protozoa, and metazoa), extracellular polymeric substances and minerals (iron, aluminum, and calcium), which form an integrated food web and energy flux within a relatively stable micro-ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!