This paper discusses the partitioning of metals (K, Na, Ca, Mg, Al, Cu, Fe, Pb and Zn) between the aqueous phase and the suspended insoluble material in fog samples collected in the Po Valley during two extensive fields campaigns. Metals represent on average 11% of the mass of suspended insoluble matter, while the main component is carbon (both organic carbon, OC = 35%, and black carbon, BC = 8%). The unaccounted suspended matter mass is very high, on average 46%, and is attributable to non metallic species, such as O and N and of Si. The principal metals in the insoluble suspended fraction are Fe and Al (2-5%), while the contributions of other metals (Na, Mg, Cu, Pb and Zn) are lower than 1%. Ca and K exhibited high blank values and could not be detected above blank detection limit threshold. The main components in the aqueous phase are NO3- (34%), WSOC (23%), SO4(2-) (18%) and NH4+ (19%), while trace metals and remaining cations and anions accounted for less than 1% of solute mass. The main dissolved trace metals in fog droplets are Zn, Al and Fe, while the main metallic cations are Na and Ca. Fe and Al are the only metals preferentially distributed in the suspended insoluble matter of fog droplets (partitioning ratio respectively 37% and 33%). All other metals are mostly dissolved in the aqueous phase (mean partitioning ratios of Mg, Pb, Zn, Cu and Na are 69%, 70%, 77%, 81% and 87%). These findings are in agreement with literature data on metal speciation in cloud and rain samples. The dependence of partitioning ratios on pH is investigated for the different metals, with only Al showing a clear partitioning ratio decrease with increasing pH. Conversely, the other metals show no dependence or a complex and highly variable behaviour. The partitioning ratio of iron (mean 37%) observed in the Po Valley fog samples is much higher than the water extractable iron in aerosol particles (typically 1-2 %): this fact can be explained by differences in the aerosol sources and composition among sites and by chemical processes in the aqueous phase, such as complexation and redox reactions involving organic ligands (oxalate, or other organic acids as humic-like organic matter) which may promote Fe solubility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adic.200590033 | DOI Listing |
Bioresour Technol
January 2025
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada. Electronic address:
Thiolated arsenic (As) compounds have been identified in various natural and engineered environments worldwide and are important for the biogeochemical cycling of As, yet quantitative data regarding their stability and transformation rates remains scarce. This study investigates the oxidation kinetics of mono-, di-, and tri-thioarsenate at varying pH, Fe, and (thio-)As concentrations in the aqueous phase. Experiments conducted over four weeks revealed that all thioarsenates were oxidized faster at lower pH, with rates of up to several μmoles/L/d at a pH of 3.
View Article and Find Full Text PDFChemosphere
January 2025
Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:
The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:
This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!