Antiangiogenic therapy is nowadays one of the most active fields in cancer research. The first strategies, aimed at inhibiting tumor vascularization, included upregulation of endogenous inhibitors and blocking of the signals delivered by angiogenic factors. But interaction between endothelial cells and their surrounding extracellular matrix also plays a critical role in the modulation of the angiogenic process. This study introduces a new concept to enhance the efficacy of antibody-based antiangiogenic cancer therapy strategies, taking advantage of a key molecular event occurring in the tumor context: the proteolysis of collagen XVIII, which releases the endogenous angiogenesis inhibitor endostatin. By fusing the collagen XVIII NC1 domain to an antiangiogenic single-chain antibody, a multispecific agent was generated, which was efficiently processed by tumor-associated proteinases to produce monomeric endostatin and fully functional trimeric antibody fragments. It was demonstrated that the combined production in the tumor area of complementary antiangiogenic agents from a single molecular entity secreted by gene-modified cells resulted in enhanced antitumor effects. These results indicate that tailoring recombinant antibodies with extracellular matrix-derived scaffolds is an effective approach to convert tumor progression associated processes into molecular clues for improving antibody-based therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.21851 | DOI Listing |
Int J Biol Macromol
December 2024
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:
Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Department of Translational Biomedicine Neuroscience, University of Bari "Aldo Moro," Bari, Italy.
Purpose: The purpose of this study was o examine the optical coherence tomographic (OCT) characteristics of hyper-reflective foci (HRF) in patients with neovascular age-related macular degeneration (nAMD) and to assess the potential of HRF as a predictive factor for the development of macular atrophy following anti-vascular endothelial growth factor (anti-VEGF) therapy.
Methods: This was a retrospective analysis of 61 treatment-naïve eyes diagnosed with exudative AMD and type 1 macular neovascularization (MNV). The HRF was identified in the inner retina and outer retina layers, and the treatment response of HRF was documented.
Updates Surg
December 2024
Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
Gastric cancer, as the fifth most diagnosed malignancy and the fourth leading cause of cancer-related death globally, remains a significant health concern. The potential effect of the programmed death-1 (PD-1) inhibitor, when used alongside chemotherapy and antiangiogenic agents in neoadjuvant therapy for gastric cancer, has yet to be explored in the published literature. This study aims to evaluate the efficacy and safety of the S-1 plus oxaliplatin (SOX) regimen when combined with apatinib and camrelizumab (SOXAC) as neoadjuvant therapy for patients with locally advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, P.R. China.
Purpose: Antiangiogenesis therapy has become a hot field in cancer research. Given that tumor blood vessels often express specific markers related to angiogenesis, the study of these heterogeneous molecules in different tumor vessels holds promise for advancing anti-angiogenic therapy. Previously using phage display technology, we identified a targeting peptide named GX1 homing to gastric cancer vessels for the first time.
View Article and Find Full Text PDFCurr Opin Endocr Metab Res
December 2024
Human thyroid cancers preclinical and translational research program, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Thyroid cancer treatment has recently been revolutionized by the introduction of specific targeted therapies (e.g. BRAF or highly selective RET inhibitors), anti-angiogenic agents (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!