This study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a flow perfusion system to generate constructs containing bone-like ECM. To observe osteodifferentiation and bone-like matrix deposition, these decellularized constructs and plain Ti fiber meshes were seeded with MSCs (Ti/ECM and Ti, respectively) and cultured in the presence of fluid shear stresses either with or without the osteogenic culture supplement dexamethasone. The calcium content, alkaline phosphatase activity, and osteopontin secretion were monitored as indicators of MSC differentiation. Ti/ECM constructs demonstrated a 75-fold increase in calcium content compared with their Ti counterparts after 16 days of culture. After 16 days, the presence of dexamethasone enhanced the effects of fluid shear stress and the bone-like ECM by increasing mineralization 50-fold for Ti/ECM constructs; even in the absence of dexamethasone, the Ti/ECM constructs exhibited approximately a 40-fold increase in mineralization compared with their Ti counterparts. Additionally, denatured Ti/ECM* constructs demonstrated a 60-fold decrease in calcium content compared with Ti/ECM constructs after 4 days of culture. These results indicate that the inherent osteoinductive potential of bone-like ECM along with fluid shear stresses synergistically enhance the osteodifferentiation of MSCs with profound implications on bone-tissue-engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413766PMC
http://dx.doi.org/10.1073/pnas.0505661103DOI Listing

Publication Analysis

Top Keywords

fluid shear
20
ti/ecm constructs
16
shear stresses
12
bone-like ecm
12
calcium content
12
extracellular matrix
8
shear stress
8
synergistically enhance
8
constructs demonstrated
8
content compared
8

Similar Publications

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.

View Article and Find Full Text PDF

Background And Objective: In clinical practice, valve-sparing aortic root replacement surgery primarily addresses left ventricular dysfunction in patients due to severe aortic regurgitation, but there is controversy regarding the choice of surgical technique. In order to investigate which type of valve-sparing aortic root replacement surgeries can achieve better blood flow conditions, this study examines the impact of changes in the geometric morphology of the aortic root on the hemodynamic environment through numerical simulation.

Methods: An idealized model of the aortic root was established based on data obtained from clinical measurements, including using the model of the aortic root without significant lesions as the control group (Model C), while using surgical models of leaflet reimplantation with tubular graft (Model T), leaflet reimplantation with Valsalva graft (Model V), and the Florida sleeve procedure (Model F) as the experimental groups.

View Article and Find Full Text PDF

Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.

View Article and Find Full Text PDF

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!